Skip to main content
Log in

Diel changes in plasma cortisol and effects of size and stress duration on the cortisol response in European sea bass (Dicentrarchus labrax)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

European sea bass (Dicentrarchus labrax), one of the most economically important fish in Mediterranean mariculture, shows high basal cortisol concentrations compared with other teleosts. The present study aims (a) to identify cortisol diel variation in fish held under a 12L:12D cycle and minimum handling stress, and (b) to establish the effect of fish size and stressor duration on the cortisol response. The results indicate high intrapopulation variability in plasma cortisol and a significant diel fluctuation with a peak value at dusk (18 h). Stressors of different intensity and/or duration affected the cortisol stress response in a differential manner according to fish size (and/or age). Maximum cortisol values in small-size fish were found at 1 and 2 h post-stress, depending on the duration of the stressor, while at 0.5 h post-stress in large fish regardless stress duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acerete L, Balasch JC, Espinosa E, Josa A, Tort L (2004) Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture 237:167–178

    Article  CAS  Google Scholar 

  • Barcellos LJG, Kreutz LC, Koakoski G, Oliveira TA, Santos da Rosa JG, Fagundes M (2012) Fish age, instead of weight and size, as a determining factor for time course differences in cortisol response to stress. Physiol Behav 107:397–400

    Article  CAS  PubMed  Google Scholar 

  • Barton BA, Peter RE, Paulencu CR (1980) Plasma cortisol levels of fingerling rainbow trout (Salmo gairdneri) at rest, and subjected to handling, confinement, transport, and stocking. Can J Fish Aquat Sci 37:805–811

    Article  CAS  Google Scholar 

  • Biswas AK, Seoka M, Tanaka Y, Takii K, Kumai H (2006) Effect of photoperiod manipulation on the growth performance and stress response of juvenile red sea bream (Pagrus major). Aquaculture 258:350–356

    Article  Google Scholar 

  • Boujard T, Leatherland JF (1991) Circadian rhythms and feeding time in fishes. Environ Biol Fish 35:109–131

    Article  Google Scholar 

  • Boujard T, Leatherland JF (1992) Diel pattern of hepatosomatic index, liver glycogen and lipid content, plasma non esterified free fatty acid, glucose, T3, T4, growth hormone and cortisol concentrations in Oncorhynchus mykiss held in different photoperiod regimes and fed using demand-feeders. Fish Physiol Biochem 10:111–122

    Article  CAS  PubMed  Google Scholar 

  • Carey JB, McCormick SD (1998) Atlantic salmon smolts are more responsive to an acute handling and confinement stress than parr. Aquaculture 168:237–253

    Article  CAS  Google Scholar 

  • Cerdá-Reverter JM, Zanuy S, Carrillo M, Madrid JA (1998) Time-course studies on plasma glucose, insulin, and cortisol in sea bass (Dicentrarchus labrax) held under different photoperiodic regimes. Physiol Behav 3:245–250

    Article  Google Scholar 

  • d’Orbcastel ER, Lemarié G, Gilles-Breuil G, Petochi T, Marino G, Triplet S, Dutto G, Fivelstad S, Coeurdacier JL, Blancheton JP (2010) Effects of rearing density on sea bass (Dicentrarchus labrax) biological performance, blood parameters and disease resistance in a flow through system. Aquat Living Resour 23:109–117

    Article  Google Scholar 

  • Davis KB, Parker NC (1986) Plasma corticosteroid stress response of fourteen species of warm water fish to transportation. Trans Am Fish Soc 115:495–499

    Article  CAS  Google Scholar 

  • Fanouraki E (2010) Investigation of stress response and development and evaluation of a non-invasive method for the determination of free cortisol release into seawater in several Mediterranean fish species, with emphasis on the European sea bass, Dicentrarchus labrax. University of Crete, Dissertation (in Greek)

    Google Scholar 

  • Fanouraki E, Papandroulakis N, Ellis T, Mylonas CC, Scott AP, Pavlidis M (2008) Water cortisol is a reliable indicator of stress in European sea bass, Dicentrarhus labrax. Behaviour 145(10):1267–1281

    Article  Google Scholar 

  • Fanouraki E, Mylonas CC, Papandroulakis N, Pavlidis M (2011) Species specificity in the magnitude and duration of the acute stress response in Mediterranean marine fish in culture. Gen Comp Endocrinol 173:313–322

    Article  CAS  Google Scholar 

  • Filiciotto F, Buscaino G, Buffa G, Bellante A, Maccarrone V, Mazzola S (2012) Anaesthetic qualities of eugenol and 2-phenoxyethanol and their effect on same haematological parameters in farmed European sea bass (Dicentrarhus labrax L.). J Anim Vet Adv 11:494–502

    Article  CAS  Google Scholar 

  • Garcia LE, Meier AH (1973) Daily rhythms in concentration of plasma cortisol in male and female gulf killifish, Fundulus grandis. Biol Bull 144:471–479

    Article  CAS  PubMed  Google Scholar 

  • Goolish EM (1989) The scaling of aerobic and anaerobic muscle power in rainbow trout (Salmo gairdneri). J Exp Biol 147:493–505

    Google Scholar 

  • Heath DD, Bernier NJ, Heath JW, Iwama GK (2011) Genetic, Environmental, and interaction effects on growth and stress response of chinook salmon (Oncorhynchus tshawytscha) fry. Can J Fish Aquat Sci 50:435–442

    Article  Google Scholar 

  • Herrero MJ, Martínez FJ, Míguez JM, Madrid JA (2007) Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin. J Comp Physiol 177:319–326

    Article  CAS  Google Scholar 

  • Jentoft S, Aastveit AH, Torjesen PA, Andersen Ø (2005) Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part A Mol Integr Physiol 141:353–358

    Article  Google Scholar 

  • Kieffer JD (2000) Limits to exhaustive exercise in fish. Comp Biochem Physiol Part A 126:161–179

    Article  CAS  Google Scholar 

  • Koakoski G, Oliveira TA, Santos da Rosa JG, Fagundes M, Kreutz LC, Barcellos LJG (2012) Divergent time course of cortisol response to stress in fish of different ages. Physiol Beha 106:129–132

    Article  CAS  Google Scholar 

  • Kühn ER, Corneillie S, Ollevier F (1986) Circadian variations in plasma osmolality, electrolytes, glucose, and cortisol in carp (Cyprinus carpio). Gen Comp Endocrinol 61:459–468

    Article  PubMed  Google Scholar 

  • Laidley CW, Leatherland JF (2006) Cohort sampling, anaesthesia and stocking-density effects on plasma cortisol, thyroid hormone, metabolite and ion levels in rainbow trout, Salmo gairdneri Richardson. J Fish Physiol 33:73–88

    Google Scholar 

  • Li J, Quabius ES, Wendelaar Bonga SE, Flik G, Lock RAC (1998) Effects of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambique tilapia (Oreochromis mossambicus). Aquat Toxicol 43:1–11

    Article  CAS  Google Scholar 

  • Maricchiolo G, Caruso G, Genovese L (2008) Haematological and immunological responses in juvenile sea bass (Dicentrarchus labrax L.) after short-term acute stress. Open Fish Sci J 1:28–35

    Article  CAS  Google Scholar 

  • Marino G, Di Marco P, Mandich A, Finoia MG, Cataudella S (2001) Changes in serum cortisol, metabolites, osmotic pressure and electrolytes in response to different blood sampling procedures in cultured sea bass (Dicentrarchus labrax L.). J Appl Ichthyol 17:115–120

    Article  Google Scholar 

  • Maury E, Ramsey K, Bass J (2010) Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 106:447–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mazeaud MM, Mazeaud F, Donaldson EM (1977) Primary and secondary effects of stress in fish: some new data with a general review. Trans Am Fish Soc 106:201–212

    Article  CAS  Google Scholar 

  • McEwen BS, Wingfield JC (2010) What’s in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57:105

    Article  PubMed Central  PubMed  Google Scholar 

  • Meka JM, Mc Cormick SD (2005) Physiological response of wild rainbow trout to angling: impact of angling duration, fish size, body condition, and temperature. Fish Res 72:311–322

    Article  Google Scholar 

  • Pankhurst NW, Dedual M (1994) Effects of capture and recovery on plasma levels of cortisol, lactate and gonadal steroids in a natural population of rainbow trout. J Fish Biol 45:1013–1025

    Article  CAS  Google Scholar 

  • Peruzzi S, Varsamos S, Chatain B, Fauvela C, Menu B, Falguière JC, Sévère A, Flik G (2005) Haematological and physiological characteristics of diploid and triploid sea bass, Dicentrarchus labrax L. Aquaculture 244:359–367

    Article  Google Scholar 

  • Peter RE, Hontela A, Cook AF, Paulencu CR (1978) Daily cycles in serum cortisol levels in the goldfish: effects of photoperiod, temperature, and sexual condition. Can J Zool 56:2443–2448

    Article  CAS  Google Scholar 

  • Pickering AD, Pottinger TG (1983) Seasonal and diel changes in plasma cortisol levels of the brown trout, Salmo trutta L. Gen Comp Endocrinol 49:232–239

    Article  CAS  PubMed  Google Scholar 

  • Pickering AD, Pottinger TG (1989) Stress responses and disease resistance in salmonid fish: effects of chronic elevation of cortisol. Fish Physiol Biochem 7:253–258

    Article  CAS  PubMed  Google Scholar 

  • Planas J, Gutierreza J, Femandeza J, Carrillo M, Canals P (1990) Annual and daily variations of plasma cortisol in sea bass, Dicentrarchus labrax L. Aquaculture 91:171–178

    Article  CAS  Google Scholar 

  • Pottinger TG (1998) Changes in blood cortisol, glucose and lactate in carp retained in anglers’ keepnets. J Fish Biol 53:728–742

    CAS  Google Scholar 

  • Pottinger TG, Carrick TR (1999) A comparison of plasma glucose and plasma cortisol as selection markers for high and low stress-responsiveness in female rainbow trout. Aquaculture 175:351–363

    Article  CAS  Google Scholar 

  • Pottinger TG, Carrick TR, Appleby A, Yeomans WE (2000) High blood cortisol levels and low cortisol receptor affinity: is the chub, Leuciscus cephalus, a cortisol-resistant teleost? Gen Comp Endocrinol 120(1):108–117

    Article  CAS  PubMed  Google Scholar 

  • Rance TA, Baker BI, Werbley G (1982) Variations in plasma cortisol concentrations over a 24-hour period in the rainbow trout Salmo gairdneri. Gen Comp Endocrinol 48:269–274

    Article  CAS  PubMed  Google Scholar 

  • Redgate ES (1974) Neural control of pituitary–adrenal activity in Cyprinus carpio. Gen Comp Endocrinol 22:35–41

    Article  CAS  PubMed  Google Scholar 

  • Roche H, Bogé G (1996) Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41:27–43

    Article  CAS  Google Scholar 

  • Romeo RD, Bellani R, Karatsoreos IN, Chhua N, Vernov M, Conrad CD (2006) Stress history and pubertal development interact to shape hypothalamic pituitary adrenal axis plasticity. Endocrinology 147:1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Rotlland J, Tort L (1997) Cortisol and glucose responses after acute stress by net handling in the sparid red porgy previously subjected to crowding stress. J Fish Biol 51:21–28

    Article  Google Scholar 

  • Rotllant J, Ruane NM, Caballero MJ, Montero D, Tort L (2003) Response to confinement in sea bass (Dicentrarchus labrax) is characterized by an increased biosynthetic capacity of interregnal tissue with no effect on ACTH sensitivity. Comp Biochem Physiol 136:613–620

    Article  CAS  Google Scholar 

  • Rotllant J, Ruane NM, Dinis MT, Canario AVM, Power DM (2006) Intra-adrenal interactions in fish: catecholamine stimulated cortisol release in sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol 143:375–381

    Article  Google Scholar 

  • Ruane NM, Wendelaar Bonga SE, Balm PHM (1999) Differences between rainbow trout and brown trout in the regulation of the pituitary–interrenal axis and physiological performance during confinement. Gen Comp Endocrinol 115:210–219

    Article  CAS  PubMed  Google Scholar 

  • Ruzzante DE (1994) Domestication effects on aggressive and schooling behavior in fish. Aquaculture 120:1–24

    Article  Google Scholar 

  • Sanchez-Vazquez FJ, Zamora S, Madrid JA (1995) Light-dark and food restriction cycles in sea bass: effect of conflicting zeitgebers on demand-feeding rhythms. Physiol Beha 58:705–714

    Article  CAS  Google Scholar 

  • Sanchez-Vazquez FJ, Azzaydi M, Martınez FJ, Zamora S, Madrid JA (1998) Annual rhythms of demand-feeding activity in sea bass: evidence of a seasonal phase inversion of the diel feeding pattern. Chronobiol Int 15(6):607–622

    Article  CAS  PubMed  Google Scholar 

  • Scott AP, Hirschenhauser K, Bender N, Oliveira R, Earley RL, Sebire M, Ellis T, Pavlidis M, Hubbard PC, Huertas M, Canario AV (2008) Non-invasive measurement of steroids in fish-holding water: guidelines for practical application. Behaviour 145:1307–1328

    Article  Google Scholar 

  • Spieler RE, Noeske TA (1984) Effects of photoperiod and feeding schedule on diel variations of locomotor activity, cortisol, and thyroxine in goldfish. Trans Am Fish Soc 115:528–539

    Article  Google Scholar 

  • Tanck MWT, Booms GHR, Eding EH, Wendelaar Bonga SE, Komen J (2000) Cold shock stress in common carp. J Fish Biol 57:881–894

    Article  Google Scholar 

  • Thorpe JE, McConway MG, Miles MS, Muir JS (1987) Diel and seasonal changes in resting plasma cortisol levels in juvenile Atlantic salmon, Salmo salar L. Gen Comp Endocrinol 65:19–22

    Article  CAS  PubMed  Google Scholar 

  • Vazzana M, Cammarata M, Cooper EL, Parrinello N (2002) Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture 210:231–243

    Article  CAS  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    CAS  PubMed  Google Scholar 

  • West GB, Brown GH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592

    Article  PubMed  Google Scholar 

  • Woodward CC, Strange RJ (1987) Physiological stress responses in wild and hatchery-reared rainbow trout. Trans Am Fish Soc 116:574–579

    Article  Google Scholar 

  • Wydoski RS, Wedemeyer GA, Nelson NC (1976) Physiological response to hooking stress in hatchery and wild rainbow trout (Salmo gairdneri). Trans Am Fish Soc 105:601–606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. [265957].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pavlidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatira, E., Papandroulakis, N. & Pavlidis, M. Diel changes in plasma cortisol and effects of size and stress duration on the cortisol response in European sea bass (Dicentrarchus labrax). Fish Physiol Biochem 40, 911–919 (2014). https://doi.org/10.1007/s10695-013-9896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9896-1

Keywords

Navigation