Skip to main content
Log in

Universal integrals based on copulas

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

A hierarchical family of integrals based on a fixed copula is introduced and discussed. The extremal members of this family correspond to the inner and outer extension of integrals of basic functions, the copula under consideration being the corresponding multiplication. The limits of the members of the family are just copula-based universal integrals as recently introduced in Klement et al. (IEEE Trans Fuzzy Syst 18:178–187, 2010). For the product copula, the family of integrals considered here contains the Choquet and the Shilkret integral, and it belongs to the class of decomposition integrals proposed in Even and Lehrer (Econ Theory, 2013) as well as to the class of superdecomposition integrals introduced in Mesiar et al. (Superdecomposition integral, 2013). For the upper Fréchet-Hoeffding bound, the corresponding hierarchical family contains only two elements: all but the greatest element coincide with the Sugeno integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bassan, B., & Spizzichino, F. (2005). Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. Journal of Multivariate Analysis, 93, 313–339.

    Article  MATH  MathSciNet  Google Scholar 

  • Beliakov, G., & James, S. (2011). Citation-based journal ranks: The use of fuzzy measures. Fuzzy Sets and Systems, 167, 101–119.

    Article  MATH  MathSciNet  Google Scholar 

  • Benvenuti, P., Mesiar, R., & Vivona, D. (2002). Monotone set functions-based integrals. In E. Pap (Ed.), Handbook of measure theory, chapter 33 (pp. 1329–1379). Amsterdam: Elsevier Science.

  • Choquet, G. (1954). Theory of capacities. Annales de l’Institut Fourier (Grenoble), 5, 131–295.

    Article  MATH  MathSciNet  Google Scholar 

  • Díaz, S., De Baets, B., & Montes, S. (2010). General results on the decomposition of transitive fuzzy relations. Fuzzy Optimization and Decision Making, 9, 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Durante, F., & Sempi, C. (2005). Semicopulæ. Kybernetika (Prague), 41, 315–328.

    MATH  MathSciNet  Google Scholar 

  • Even, Y., Lehrer, E. (2013). Decomposition-integral: Unifying Choquet and the concave integrals. Economic Theory doi:10.1007/s00199-013-0780-0.

  • Gagolewski, M., & Mesiar, R. (2014). Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem. Information Sciences. doi:10.1016/j.ins.2013.12.004.

  • Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Klement, E. P., Kolesárová, A., Mesiar, R., & Stup\(\check{\rm n}\)anová, A. (2013). A generalization of universal integrals by means of level dependent capacities. Knowledge-Based Systems, 38, 14–18.

    Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular norms. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (2004). Measure-based aggregation operators. Fuzzy Sets and Systems, 142, 3–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (2010). A universal integral as common frame for Choquet and Sugeno integral. IEEE Transactions on Fuzzy Systems, 18, 178–187.

    Article  Google Scholar 

  • Klement, E. P., Spizzichino, F., Mesiar, R., & Stup\(\check{\rm n}\)anová, A. (2013). Copula-based universal integrals. In Proceedings 2013 IEEE international conference on fuzzy systems (pp. 1065–1069). Hyderabad: IEEE.

  • Mesiar, R., Li, J., & Pap, E. (2013). Superdecomposition integral (submitted for publication).

  • Mesiar, R., & Stup\(\check{\rm n}\)anová, A. (2013). Decomposition integrals. Internat. J. Approx. Reason., 54, 1252–1259.

    Google Scholar 

  • Nelsen, R. B. (2006). An introduction to copulas (2nd ed., Vol. 139) Lecture Notes in Statistics. New York: Springer.

  • Shilkret, N. (1971). Maxitive measure and integration. Indagationes Mathematicae, 33, 109–116.

    Article  MathSciNet  Google Scholar 

  • Sklar, A. (1959). Fonctions de répartition à \(n\) dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8, 229–231.

    MathSciNet  Google Scholar 

  • Sugeno, M. (1974). Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology.

  • Torra, V., & Narukawa, Y. (2008). The \(h\)-index and the number of citations: Two fuzzy integrals. IEEE Transactions on Fuzzy Systems, 16, 795–797.

    Article  MathSciNet  Google Scholar 

  • Yager, R. R. (2013). Joint cumulative distribution functions for Dempster-Shafer belief structures using copulas. Fuzzy Optimization and Decision Making, 12, 393–414.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work on this paper was supported by the “Technologie-Transfer-Förderung” Wi-2013-168051/WWin/Kai of the Upper Austrian Government and by the grants APVV-0073-10, GAČR P402/11/0378 and VEGA 1/0143/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Peter Klement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klement, E.P., Mesiar, R., Spizzichino, F. et al. Universal integrals based on copulas. Fuzzy Optim Decis Making 13, 273–286 (2014). https://doi.org/10.1007/s10700-014-9182-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-014-9182-4

Keywords

Navigation