Skip to main content
Log in

Squashed Entanglement, \(\mathbf {k}\)-Extendibility, Quantum Markov Chains, and Recovery Maps

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Squashed entanglement (Christandl and Winter in J. Math. Phys. 45(3):829–840, 2004) is a monogamous entanglement measure, which implies that highly extendible states have small value of the squashed entanglement. Here, invoking a recent inequality for the quantum conditional mutual information (Fawzi and Renner in Commun. Math. Phys. 340(2):575–611, 2015) greatly extended and simplified in various work since, we show the converse, that a small value of squashed entanglement implies that the state is close to a highly extendible state. As a corollary, we establish an alternative proof of the faithfulness of squashed entanglement (Brandão et al. Commun. Math. Phys. 306:805–830, 2011). We briefly discuss the previous and subsequent history of the Fawzi–Renner bound and related conjectures, and close by advertising a potentially far-reaching generalization to universal and functorial recovery maps for the monotonicity of the relative entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Frigerio, A.: Markovian cocycles. Proc. R. Irish Acad. 83A(2), 251–263 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Alhambra, A.M., Woods, M.P.: Dynamical maps, quantum detailed balance and petz recovery map. arXiv:1609.07469v3 (2017)

  3. Alicki, R., Fannes, M.: Continuity of quantum conditional information. Phys. Lett. A 37, L55–L57 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43(5), 2097–2106 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Berta, M., Seshadreesan, K.P., Wilde, M.M. : Rényi generalizations of the conditional quantum mutual information. arXiv:1403.6102 (2014)

  7. Brandão, F.G.S.L., Christandl, M., Yard, J.T.: Faithful squashed entanglement. Commun. Math. Phys. 306, 805–830 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brandão, F.G.S.L., Harrow, A.W.: Quantum de finetti theorems under local measurements with applications, In: Procreeding of the 45th ACM Symposium Theory Computer (STOC 2013), pp. 861–870. arXiv:1210.6367 (2012)

  9. Christandl, M.: The structure of bipartite quantum states: insights from group theory and cryptography. PhD thesis, University of Cambridge. arXiv:quant-ph/0604183 (2006)

  10. Christandl, M., König, R., Mitchison, G., Renner, R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473–498 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Christandl, M., Schuch, N., Winter, A.: Highly entangled states with almost no secrecy. Phys. Rev. Lett. 104, 240405 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Christandl, M., Schuch, N., Winter, A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311(2), 397–422 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Christandl, M., Winter, A.: ‘Squashed entanglement’: an additive entanglement measure. J. Math. Phys. 45(3), 829–840 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lancien, C., Di Martino, S., Huber, M., Piani, M., Adesso, G., Winter, A.: Should entanglement measures be monogamous or faithful? Phys. Rev. Lett. 117, 060501 (2016)

    Article  ADS  Google Scholar 

  15. Dupuis, F., Wilde, M.M.: Swiveled Rényi entropies. arXiv:1506.00981 (2015)

  16. Fawzi, H., Fawzi, O.: Relative entropy optimization in quantum information theory via semidefinite programming approximations. arXiv:1506.00981 (2017)

  17. Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hayden, P., Jozsa, R., Petz, D., Winter, A.: Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246(2), 359–374 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hayden, P., Leung, D.W., Winter, A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ibinson, B., Linden, N., Winter, A.: Robustness of quantum Markov chains. Commun. Math. Phys. 277(2), 289–304 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery maps and approximate sufficiency of quantum relative entropy. arXiv:1509.07127v2 (2016)

  24. Kim, I.H.: Personal communication (2012)

  25. Kim, I.H.: On the informational completeness of local observables. arXiv:1405.0137 (2014)

  26. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lami, L., Das, S., Wilde, M.M.: Approximate reversal of quantum Gaussian dynamics. arXiv:1702.04737 (2017)

  28. Li, K., Winter, A.: Relative entropy and squashed entanglement. Commun. Math. Phys. 326(1), 63–80 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lieb, E.H., Ruskai, M.-B.: Proof of the strong subadditivity of quantum-mechanical entropy. With an appendix by B. Simon. J. Math. Phys. 14(12), 1938–1941 (1973)

    Article  ADS  Google Scholar 

  30. Navascués, M., Owari, M., Plenio, M.B.: Power of symmetric extensions for entanglement detection. Phys. Rev. A 80, 052306 (2009)

    Article  ADS  MATH  Google Scholar 

  31. Nielsen, M.A.: Continuity bounds for entanglement. Phys. Rev. A 61, 064301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Petz, D.: Sufficiency of channels over von Neumann algebras. Quart. J. Math. 39(1), 97–108 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schumacher, B., Westmoreland, M.D.: Approximate quantum error correction. Quantum Inf. Process. 1(1&2), 5–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Seshadreesan, K.P., Berta, M., Wilde, M.M.: Rényi squashed entanglement, discord, and relative entropy differences. arXiv:1410.1443 (2014)

  36. Størmer, E.: Symmetric states of infinite tensor products of C\({}^*\)-algebras. J. Funct. Anal. 3(1), 48–68 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  37. Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–999 (1989)

    MathSciNet  MATH  Google Scholar 

  38. Fannes, M., Lewis, J.T., Verbeure, A.: Symmetric states of composite systems. Lett. Math. Phys. 15, 255–260 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Sutter, D., Berta, M., Tomamichel, M.: Multivariate trace inequalities. Commun. Math. Phys. 352(1), 37–58 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Sutter, D., Tomamichel, M., Harrow, A.W.: Strengthened monotonicity of relative entropy via pinched Petz recovery map. IEEE Trans. Inf. Theory 62(5), 2907–2913 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Takeoka, M., Guha, S., Wilde, M.M.: The squashed entanglement of a quantum channel. IEEE Trans. Inf. Theory 60(8), 4987–4998 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Terhal, B.M.: Is entanglement monogamous? IBM J. Res. Dev. 48(1), 71–78 (2004)

    Article  Google Scholar 

  43. Tucci, R.R.: Quantum entanglement and conditional information transmission. arXiv:quant-ph/9909041 (1999)

  44. Tucci, R.R.: Entanglement of distillation and conditional mutual information. arXiv:quant-ph/0202144 (2002)

  45. Wilde, M.M.: Multipartite quantum correlations and local recoverability. Proc. R. Soc. A 471(2177), 20140941 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. A Lond. 471(2182), 20150338 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Winter, A., Li, K.: A stronger subadditivity relation? With applications to squashed entanglement, sharability and separability. URL https://www.scribd.com/document/337859204/ (2008–2012)

  48. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Yang, D., Horodecki, M., Wang, Z.D.: An additive and operational entanglement measure: conditional entanglement of mutual information. Phys. Rev. Lett. 101, 140501 (2008)

    Article  ADS  Google Scholar 

  50. Yang, D., Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J., Song, W.: Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof. IEEE Trans. Inf. Theory 55(7), 3375–3387 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, L.: Conditional mutual information and commutator. Int. J. Theor. Phys. 52(6), 2112–2117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Since the first formulation of the proof idea of Theorem 1 in 2008 [47], we have enjoyed conversations and the keen interest of many people in the question of recoverability and remainder terms for strong subadditivity and the monotonicity of relative entropy, among them Fernando Brandão, Matthias Christandl, Paul Erker, Omar Fawzi, Aram Harrow, Isaac Kim, Cécilia Lancien, Renato Renner and Mark Wilde. When this work was started, KL was affiliated with the Centre for Quantum Technologies (CQT), National University of Singapore; AW was affiliated with the School of Mathematics, University of Bristol and with CQT. KL was supported by NSF Grants CCF-1110941 and CCF-1111382. AW was supported by the ERC Advanced Grant “IRQUAT”, the European Commission (STREP “RAQUEL”), the Spanish MINECO (Grants FIS2008-01236, FIS2013-40627-P and FIS2016-86681-P) with the support of FEDER funds, and the Generalitat de Catalunya CIRIT, Project 2014-SGR-966.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winter.

Appendix: Multi-Party Squashed Entanglement

Appendix: Multi-Party Squashed Entanglement

One might wonder if our approach could also be used to prove faithfulness of the multi-party squashed entanglement [50],

$$\begin{aligned} E_{\text {sq}}(\rho ^{A_1\ldots A_n}) = \inf _{\rho ^{A_1\ldots A_n E}} \frac{1}{2}I(A_1:\cdots :A_n|E), \end{aligned}$$
(20)

with \(I(A_1\!:\!\cdots \!:\!A_n|E) = \sum _{i=1}^n S(A_i|E) - S(A_1\ldots A_n|E)\) the conditional multi-information. That is, \(E_{\text {sq}}(\rho ^{A_1\ldots A_n})\) would vanish iff \(\rho \) is n-separable:

$$\begin{aligned} \rho ^{A_1\ldots A_n} = \sum _\lambda p_\lambda \rho _{\lambda |1}^{A_1} \otimes \cdots \otimes \rho _{\lambda |n}^{A_n}. \end{aligned}$$

It seems that with the methods of [7, 28] this cannot be approached.

The idea starts from the identity

$$\begin{aligned} \begin{aligned} I(A_1:\cdots :A_n|E)&= I(A_1:A_2\ldots A_n|E) + I(A_2:\cdots :A_n|E) \\&= \ldots = \sum _{i=1}^{n-1} I(A_i:A_{i+1}\ldots A_n|E), \end{aligned} \end{aligned}$$

showing that \(I(A_1:\cdots :A_n|E) \le 2\epsilon \) implies, for all i, \(I(A_i:A_{[n]\setminus i}|E) \le 2\epsilon \), and more generally, for all subsets \(I\subset [n]\), \(I(A_I:A_{[n]\setminus I}|E) \le 2\epsilon \).

In particular, if \(\epsilon = 0\), we can use the structure theorem of [19] to find, for each i, a projective measurement \(\bigl ( P^{(i)}_{\lambda _i} \bigr )\) on E that commutes with \(\rho ^{A_1\ldots A_n E}\), such that for all \(\lambda _i\),

$$\begin{aligned} {\text {Tr}}_E \rho ^{A_1\ldots A_n E} P^{(i)}_{\lambda _i} = p_{\lambda _i} \sigma _{\lambda _i}^{A_i} \otimes \tau _{\lambda _i}^{A_{[n]\setminus i}}, \end{aligned}$$

i.e., conditioned on the measurement outcomes \(\lambda _i\), \(A_i\) and \(A_{[n]\setminus i}\) are in a product state. Performing all these measurements in some fixed order, we thus obtain outcomes \(\lambda = \lambda _1\ldots \lambda _n\) such that conditioned on \(\lambda \), the state is a product state with respect to all partitions \(i:[n]\setminus i\), which means that conditioned on \(\lambda \), \(A_1,\ldots ,A_n\) factorize.

We would like to use the machinery of the recovery maps to extract from E a large number k of approximate copies of each \(A_i\), using approximate recovery maps \(\widetilde{R}_i:\mathcal {L}(E) \longrightarrow \mathcal {L}(EA_i)\) according to Eq. (6). With \(t = \sqrt{8\ln 2}\sqrt{\epsilon }\) and tracing out E, we can indeed get a state \(\varOmega ^{A_1 A_2^{[k]}\ldots A_n^{[k]}}\), with \(A_i^{[k]} = A_i^1\ldots A_i^k\) consisting of k copies of \(A_i\), such that

$$\begin{aligned} \Vert \rho ^{A_1\ldots A_n} - \varOmega ^{A_1 A_2^{j_2}\ldots A_n^{j_n}} \Vert _1 \le (n-1)(k-1)t \le nk\sqrt{8\ln 2}\sqrt{\epsilon }, \end{aligned}$$

for all tuples \((j_2,\ldots ,j_n)\) such that all but at most one \(j_i\) equals 1.

We cannot say easily that this holds for all tuples \((j_2,\ldots ,j_n)\), because the different recover maps may interfere with each other. However, if we could conclude that, we would be done: by symmetrizing the k copies of each \(A_i\) (\(i>1\)) we would find, as before, that \(\rho \) is \(O(\root 4 \of {\epsilon })\)-close to a k-extendible state, with \(k=\varOmega \left( \frac{1}{\root 4 \of {\epsilon }}\right) \).

We could then again use the results of [30], now extended to the multi-partite case, to see that \(\varOmega ^{A_1 A_2^{j_2}\ldots A_n^{j_n}}\) is at trace distance at most \(\frac{2}{k}(|A_2|^2+\cdots +|A_n|^2)\) from a fully separable (i.e. n-separable) state. Note that a reasoning along these lines goes through for the – generally larger – multi-party conditional entanglement of mutual information (CEMI) [49, 50]

$$\begin{aligned} E_{\text {I}}(\rho ^{A_1\ldots A_n}) = \inf _{\rho ^{A_1 A_1'\ldots A_n A_n'}} \frac{1}{2}\bigl [ I(A_1A_1':\cdots :A_n A_n') - I(A_1':\cdots :A_n') \bigr ], \end{aligned}$$

as since shown by Wilde [45]. We have to leave the problem of finding an extension of Theorem 1 to \(n>2\) parties to the attention of the interested reader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Winter, A. Squashed Entanglement, \(\mathbf {k}\)-Extendibility, Quantum Markov Chains, and Recovery Maps. Found Phys 48, 910–924 (2018). https://doi.org/10.1007/s10701-018-0143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0143-6

Keywords

Navigation