Skip to main content
Log in

Relational Event-Time in Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Some authors, inspired by the theoretical requirements for the formulation of a quantum theory of gravity, proposed a relational reconstruction of the quantum parameter-time—the time of the unitary evolution, which would make quantum mechanics compatible with relativity. The aim of the present work is to follow the lead of those relational programs by proposing a relational reconstruction of the event-time—which orders the detection of the definite values of the system’s observables. Such a reconstruction will be based on the modal-Hamiltonian interpretation of quantum mechanics, which provides a clear criterion to select which observables acquire a definite value and to specify in what situation they do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Page, D., Wootters, W.: Evolution without evolution. Physical Review D 27, 2885–2892 (1983)

    Article  ADS  Google Scholar 

  2. Rovelli, C.: Quantum mechanics without time: A model. Phys. Rev. D 42, 2638–2646 (1990)

    Article  ADS  Google Scholar 

  3. Rovelli, C.: “Is there incompatibility between the ways time is treated in general relativity and in standard quantum mechanics?” In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, pp. 126–136. Birkhauser, New York (1991)

    Google Scholar 

  4. Rovelli, C.: Forget time. Essay written for the FQXi contest on the Nature of Time (2008).

  5. Wootters, W.: “Time” replaced by quantum correlations. Int. J. Theor. Phys. 23, 701–711 (1984)

    Article  MathSciNet  Google Scholar 

  6. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Modal-Hamiltonian interpretation of quantum mechanics and Casimir operators: the road to quantum field theory. Int. J. Theor. Phys. 50, 774–791 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castagnino, M., Lombardi, O.: The role of the Hamiltonian in the interpretation of quantum mechanics. J. Phys. 28, 012014 (2008)

    Google Scholar 

  9. Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lombardi, O., Castagnino, M., Ardenghi, J.S.: The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 41, 93–103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barnes, J. (ed.): The Complete Works of Aristotle, Volumes I and II. Princeton University Press, Princeton (1984)

    Google Scholar 

  12. Alexander, H.G. (ed.): The Leibniz-Clarke Correspondence. Manchester University Press, Manchester (1956)

    Google Scholar 

  13. Mach, E.: The Science of Mechanics: A critical and Historical Account of its Development, trans. by T. J. McCormack. Open Court, La Salle (1883) [1960]

  14. Hoefer, C.: Einstein’s formulations of Mach’s Principle. In: Barbour, J., Pfister, H. (eds.) Mach’s Principle. From Newton’s Bucket to Quantum Gravity, pp. 67–87. Birkhäuser, Boston (1995)

    Google Scholar 

  15. Barbour, J., Bertotti, B.: Gravity and inertia in a Machian framework. Nuovo Cimento 38B, 1–27 (1977)

    Article  ADS  Google Scholar 

  16. Barbour, J., Bertotti, B.: Mach’s Principle and the structure of dynamical theories. Proc. R. Soc. (Lond.) 382, 295–306 (1982)

    MathSciNet  MATH  ADS  Google Scholar 

  17. Barbour, J.: Relational concepts of space and time. Br. J. Philos. Sci. 33, 251–274 (1982)

    Article  MathSciNet  Google Scholar 

  18. Pooley, O., Brown, H.: Relationalism rehabilitated? I: Classical mechanics. Br. J. Philos. Sci. 53, 183–204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barbour, J.B.: The End of Time: The Next Revolution in Our Understanding of the Universe. Weidenfeld & Nicholson, London (1999)

    MATH  Google Scholar 

  20. Butterfield, J.: The end of time? Br. J. Philos. Sci. 53, 289–330 (2001)

    Article  MATH  Google Scholar 

  21. Pooley, O.: Relationalism rehabilitated? II: Relativity. PhilSci Arch., p. http://philsci-archive.pitt.edu/221/ (2001)

  22. Albert, D.Z.: Wave function realism. In: Ney, A., Albert, D.Z. (eds.) The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  23. Busch, P.: The time-energy uncertainty relation. In: Muga, J., Mayato, R.S., Egusquiza, I. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734, pp. 73–105. Springer, Berlin-Heidelberg (2008)

    Chapter  Google Scholar 

  24. Bohr, N.: Das Quantenpostulat und die neuere Entwicklung der Atomistik. Naturwissenschaften 16, 245–257 (1928)

    Article  MATH  ADS  Google Scholar 

  25. Busch, P.: On the energy-time uncertainty relation. Part I: Dynamical time and time indeterminacy. Found. Phys. 20, 1–32 (1990)

    Article  ADS  Google Scholar 

  26. Busch, P.: On the energy-time uncertainty relation. Part II: Pragmatic time versus energy Indeterminacy. Found. Phys. 20, 33–43 (1990)

    Article  ADS  Google Scholar 

  27. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  MATH  ADS  Google Scholar 

  28. Pauli: Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, vol. 24, 2nd edn., pp. 83–272. Springer-Verlag, Berlin (1933)

    Google Scholar 

  29. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. (USSR) 9, 249–254 (1945)

    MathSciNet  MATH  Google Scholar 

  30. Ballentine, L.: Quantum Mechanics. A Modern Development. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  31. Messiah, A.: Quantum Mechanics, vol. 1. North-Holland, Amsterdam (1961)

    MATH  Google Scholar 

  32. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups, and Quantum Field Theories, NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 409, pp. 157–287. Springer, Dordrecht (1993)

    Chapter  Google Scholar 

  33. Kuchař, K.: The problem of time in canonical quantization. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, pp. 141–171. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  34. Marletto, C., Vedral, V.: Evolution without evolution and without ambiguities. Phys. Rev. D 95, 043510 (2017)

    Article  ADS  Google Scholar 

  35. DeWitt, B.S.: Quantum theory of gravity. Phys. Rev. D 160, 1113–1148 (1967)

    Article  MATH  ADS  Google Scholar 

  36. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  37. Rovelli, C.: Partial observables. Phys. Rev. D 65, 124013 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  38. Van Fraassen, B.C.: A formal approach to the philosophy of science. In: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, pp. 303–366. University of Pittsburgh Press, Pittsburgh (1972)

    Google Scholar 

  39. Van Fraassen, B.C.: Semantic analysis of quantum logic. In: Hooker, C.A. (ed.) Contemporary Research in the Foundations and Philosophy of Quantum Theory, pp. 80–113. Reidel, Dordrecht (1973)

    Chapter  Google Scholar 

  40. Van Fraassen, B.C.: The Einstein-Podolsky-Rosen paradox. Synthese 29, 291–309 (1974)

    Article  Google Scholar 

  41. Dieks, D., Vermaas, P.E.: The Modal Interpretation of Quantum Mechanics. Kluwer Academis Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  42. Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed) Stanford Encyclopedia of Philosophy (Winter 2021 Edition). Stanford University, Stanford. https://plato.stanford.edu/entries/qm-modal/ (2021).

  43. Lombardi, O.: The Modal-Hamiltonian Interpretation: measurement, invariance and ontology. In: Lombardi, O., Fortin, S., López, C., Holik, F. (eds.) Quantum Worlds Perspectives on the Ontology of Quantum Mechanics, pp. 32–50. Cambridge University Press, Cambridge (2018)

    Google Scholar 

  44. Ardenghi, J.S., Lombardi, O., Narvaja, M.: Modal interpretations and consecutive measurements. In: Karakostas, V., Dieks, D. (eds.) EPSA 2011: Perspectives and Foundational Problems in Philosophy of Science, pp. 207–217. Springer, Berlin (2013)

    Chapter  Google Scholar 

  45. Fortin, S., Lombardi, O., Martínez González, J.C.: A new application of the modal-Hamiltonian interpretation of quantum mechanics: the problem of optical isomerism. Stud. Hist. Philos. Mod. Phys. 62, 123–135 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lombardi, O., Fortin, S.: The role of symmetry in the interpretation of quantum mechanics. Electron. J. Theor. Phys. 12, 255–272 (2015)

    Google Scholar 

  47. Da Costa, N., Lombardi, O.: Quantum mechanics: ontology without individuals. Found. Phys. 44, 1246–1257 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Da Costa, N., Lombardi, O., Lastiri, M.: A modal ontology of properties for quantum mechanics. Synthese 190, 3671–3693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Fortin, S., Lombardi, O.: Entanglement and indistinguishability in a quantum ontology of properties. Stud. Hist. Philos. Sci. (Forthcoming, 2021)

  50. Lombardi, O., Dieks, D.: Particles in a quantum ontology of properties. In: Bigaj, T., Wüthrich, C. (eds.) Metaphysics in Contemporary Physics, pp. 123–143. Brill-Rodopi, Leiden (2016)

    Google Scholar 

  51. Omnés, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    Book  MATH  Google Scholar 

  52. Omnés, R.: Understanding Quantum Mechanics. Princeton University Press, Princeton (1999)

    Book  MATH  Google Scholar 

  53. Albert, D., Loewer, B.: Wanted dead or alive: two attempts to solve Schrödinger’s paradox. In: Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, vol. 1, pp. 277–285. Philosophy of Science Association, East Lansing (1990)

    Google Scholar 

  54. Albert, D., Loewer, B.: Non-ideal measurements. Found. Phys. Lett. 6, 297–305 (1993)

    Article  MathSciNet  Google Scholar 

  55. Elby, A.: Why ‘modal’ interpretations don’t solve the measurement problem. Found. Phys. Lett. 6, 5–19 (1993)

    Article  MathSciNet  Google Scholar 

  56. Lombardi, O., Fortin, S., López, C.: Measurement, interpretation and information. Entropy 17, 7310–7330 (2015)

    Article  ADS  Google Scholar 

  57. Cohen-Tannoudji, C., Diu, B., Lalöe, F.: Quantum Mechanics. Wiley, New York (1977)

    MATH  Google Scholar 

  58. Laura, R., Vanni, L.: Conditional probabilities and collapse in quantum measurements. Int. J. Theor. Phys. 47, 2382–2392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Faye, J.: Copenhagen interpretation of quantum mechanics. In: Zalta, E.N (ed.) Stanford Encyclopedia of Philosophy (Winter 2019 Edition). Stanford University, Stanford. https://plato.stanford.edu/entries/qm-copenhagen/ (2019)

  60. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. De Witt, B.: Quantum mechanics and reality. Phys. Today 23, 30–35 (1970)

    Article  Google Scholar 

  62. Vermaas, P.E.: Unique transition probabilities in the modal interpretation. Stud. Hist. Philos. Mod. Phys. 27, 133–159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  63. Earman, J.: An attempt to add a little direction to «the problem of the direction of time». Philos. Sci. 41, 15–47 (1974)

    Article  Google Scholar 

  64. Castagnino, M., Lara, L., Lombardi, O.: The cosmological origin of time-asymmetry. Class. Quantum Gravity 20, 369–391 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. Castagnino, M., Lombardi, O.: The generic nature of the global and non-entropic arrow of time and the double role of the energy-momentum tensor. J. Phys. A 37, 4445–4463 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. Castagnino, M., Lombardi, O.: The global non-entropic arrow of time: from global geometrical asymmetry to local energy flow. Synthese 169, 1–25 (2009)

    Article  MATH  Google Scholar 

  67. Castagnino, M., Lombardi, O., Lara, L.: The global arrow of time as a geometrical property of the universe. Found. Phys. 33, 877–912 (2003)

    Article  MathSciNet  Google Scholar 

  68. Gryb, S., Thébault, K.: Time remains. Br. J. Philos. Sci. 67, 663–705 (2016)

    Article  MathSciNet  Google Scholar 

  69. Hawking, S., Ellis, G.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  70. Rovelli, C.: The disappearance of space and time. In: Dieks, D. (ed.) The Ontology of Spacetime, pp. 25–35. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  71. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  72. Laudisa, F., Rovelli, C.: Relational quantum mechanics. In: Zalta, E.N (ed) Stanford Encyclopedia of Philosophy (Spring 2021 Edition). Stanford University, Stanford. https://plato.stanford.edu/entries/qm-relational/ (2021)

Download references

Acknowledgements

This work was supported by grant ID-61785 of the John Templeton Foundation and by grant PICT-04519 of the Agencia Nacional de Promoción Científica y Tecnológica of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortin, S., Lombardi, O. & Pasqualini, M. Relational Event-Time in Quantum Mechanics. Found Phys 52, 10 (2022). https://doi.org/10.1007/s10701-021-00528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00528-8

Keywords

Navigation