Skip to main content
Log in

Traversable-Wormhole Physics in GBD Theory of Modified Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The generalized Brans–Dicke theory (GBD), as one of the modified gravitational theories, was proposed previously and some interesting properties were found in this theory. Here we investigate the traversable-wormhole physics for GBD theory. Firstly, we derive the gravitational field equation in the framework of GBD wormhole geometry. The traversable wormhole could be gained in this theory. Secondly, using the classical reconstruction technique we originally derive an Lagrangian function for describing gravity in GBD theory. And the derived Lagrangian function for gravity could be satisfied with the requirement of the viable conditions, such as the local gravity tests and the cosmological constraints, etc. Thus, the viable model for cosmology, local gravity and traversable WH can be unified in a uniform Lagrangian quantity within the framework of GBD theory. Thirdly, given that the violation of the energy conditions (ECs) often induce some problems in theory, we explore the ECs of matter in the traversable wormhole. It is shown that the null EC, the weak EC and the dominated EC for the matter can be satisfied in the traversable-wormhole physics of GBD theory, which are different from the results given in GR. It seems that the theory of GBD owns the more logic technically and consistency formally than the theory of GR. Fourthly, some other properties of GBD traversable WH are explored, such as the total gravitational energy, the volume integral quantifier, the dynamical stability of the anisotropic matter, and the difference of the propagation of sound within the matter configuration. The results support the GBD to provide an interesting candidate for traversable WH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

My manuscript has no associated data.

References

  1. Perlmutter, S., et al.: Constraining dark energy with SNe Ia and large-scale structur. Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  2. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  3. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    ADS  MATH  Google Scholar 

  4. La, D., Steinhardt, P.J.: Extended inflationary cosmology. Phys. Rev. Lett. 62, 376 (1989)

    ADS  Google Scholar 

  5. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)

    ADS  MATH  Google Scholar 

  6. Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    ADS  MATH  Google Scholar 

  8. Zheng, J., Chen, Y., Zhu, Z.: Diagnosing the cosmic coincidence problem and its evolution with recent observations, [arXiv:2107.08916]

  9. Carroll, S.M.: Dark energy and the preposterous universe. Living Rev. Relat. Living Rev. Rel. 4, 1 (2001)

    ADS  Google Scholar 

  10. Ijjas, A., Steinhardt, P.J.: Bouncing cosmology made simple. Class. Quant. Grav. 13, 35 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Ijjas, A., Steinhardt, P.J., Loeb, A.: Inflationary schism after Planck 2013. Phys. Lett. B 736, 142–146 (2014)

    ADS  MathSciNet  Google Scholar 

  12. Smoot, G.F., et al.: Cosmic microwave background probes models of inflation. Astrophys. J. 396, L1–L5 (1992)

    ADS  Google Scholar 

  13. De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relat. 13, 3 (2010)

    ADS  MATH  Google Scholar 

  14. Nojiri, S., Odintsov, S.D., Oikonomou, V.K., Chatzarakis, N., Paul, T.: Viable inflationary models in a ghost-free gauss-bonnet theory of gravity, [arXiv:1907.00403]

  15. Bhattacharjee, S., Santos, J.R.L., Moraes, P.H.R.S., Sahoo, P.K.: Inflation in f(R,T) gravity. Eur. Phys. J. Plus 135, 576 (2020)

    Google Scholar 

  16. Ijjas, A., Steinhardt, P.J., Loeb, A.: Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 723, 261–266 (2013)

    ADS  Google Scholar 

  17. Ijjas, A., Steinhardt, P.J.: A new kind of cyclic universe. Phys. Lett. B 795, 666–672 (2019)

    ADS  Google Scholar 

  18. Ijjas, A., Steinhardt, P.J.: Fully stable cosmological solutions with a non-singular classical bounce. Phys. Lett. B 764, 289–294 (2017)

    ADS  MATH  Google Scholar 

  19. Ijjas, A., Pretorius, F., Steinhardt, P.J.: Classically stable non-singular cosmological bounces. Phys. Rev. Lett. 117, 121304 (2016)

    ADS  MathSciNet  Google Scholar 

  20. Xue, B., Steinhardt, P.J.: Unstable growth of curvature perturbation in non-singular bouncing cosmologies. Phys. Rev. Lett. 105, 261301 (2010)

    ADS  Google Scholar 

  21. Xue, B., Steinhardt, P.J.: Evolution of curvature and anisotropy near a nonsingular bounce. Phys. Rev. D 84, 083520 (2011)

    ADS  Google Scholar 

  22. Bars, I., Steinhardt, P.J., Turok, N.: Cyclic cosmology, conformal symmetry and the metastability of the higgs. Phys. Lett. B 726, 13 (2013)

    Google Scholar 

  23. Lu, J., Chee, G.: Cosmology in Poincare gauge gravity with a pseudoscalar torsion. JHEP 05, 024 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Lu, J., Xu, L., Tan, H., Gao, S.: Extended Chaplygin gas as a unified fluid of dark components in varying gravitational constant theory. Phys. Rev. D 89, 063526 (2014)

    ADS  Google Scholar 

  25. Lu, J., Xu, Y., Wu, Y.: Cosmic constraint on the unified model of dark sectors with or without a cosmic string fluid in the varying gravitational constant theory. Eur. Phys. J. C 75, 473 (2015)

    ADS  Google Scholar 

  26. Huang, Q.G.: An analytic calculation of the growth index for f(R) dark energy model. Eur. Phys. J. C 74, 2964 (2014)

    ADS  Google Scholar 

  27. Hohmann, M., Jarv, L., Kuusk, P., Randla, E., Vilson, O.: Post-Newtonian parameter for multiscalar-tensor gravity with a general potential. Phys. Rev. D 94, 124015 (2016)

    ADS  MathSciNet  Google Scholar 

  28. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rept. 692, 1–104 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  29. de la Cruz-Dombriz, A., Elizalde, E., Odintsov, S.D., Saez-Gomez, D.: Spotting deviations from R\(^2\) inflation. JCAP 5, 60 (2016)

    MathSciNet  Google Scholar 

  30. Sotiriou, T.P.: Constraining f(R) gravity in the Palatini formalism. Class. Quant. Grav. 23, 5117 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Giacchini, B.L., Shapiro, I.L.: Light bending in F(R) extended gravity theories. Phys. Lett. B 780, 54–60 (2018)

    ADS  MATH  Google Scholar 

  32. De Laurentis, M., De Martino, I., Lazkoz, R.: Modified gravity revealed along geodesic tracks. Eur. Phys. J. C 78, 916 (2018)

    ADS  Google Scholar 

  33. De Martino, I., Lazkoz, R., De Laurentis, M.: Analysis of the Yukawa gravitational potential in f(R) gravity I: semiclassical periastron advance. Phys. Rev. 97, 104067 (2018)

    MathSciNet  Google Scholar 

  34. Ferraro, R., Fiorini, F.: Modified teleparallel gravity: inflation without inflaton. Phys. Rev. D 75, 084031 (2007)

    ADS  MathSciNet  Google Scholar 

  35. Bengochea, G.R., Ferraro, R.: Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2009)

    ADS  Google Scholar 

  36. Nojiri, S., Odintsov, S.D., Sami, M.: Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction. Phys. Rev. D 74, 046004 (2006)

    ADS  Google Scholar 

  37. Cartier, C., Copeland, E.J., Madden, R.: The graceful exit in pre-big bang string cosmology. JHEP 0001, 035 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Brans, C., Dicke, R.H.: Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 124, 925 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Ijjas, A., Pretorius, F., Steinhardt, P.J.: Stability and the gauge problem in non-perturbative cosmology. JCAP 1, 15 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Lu, J., Wang, Y., Zhao, X.: Linearized modified gravity theories and gravitational waves physics in the GBD theory. Phys. Lett. B 795, 129–134 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Lu, J., Wu, Y., Yang, W., Liu, M., Zhao, X.: The generalized Brans-Dicke theory and its cosmology. Eur. Phys. J. Plus 134, 318 (2019)

    Google Scholar 

  42. Lu, J., Li, J., Guo, H., Zhuang, Z., Zhao, X.: Linearized physics and gravitational-waves polarizations in the Palatini formalism of GBD theory. Phys. Lett. B 811, 135985 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Bhattacharya, S., Chakraborty, S.: f(R) gravity solutions for evolving wormholes. Eur. Phys. J. C 77, 558 (2017)

    ADS  Google Scholar 

  44. Samanta, G.C., Godani, N.: Validation of Energy Conditions in Wormhole Geometry within Viable f(R) Gravity. Eur. Phys. J. C 79, 623 (2019)

    ADS  Google Scholar 

  45. Flamm, L.: Z. Phys. Beitr?ge zur Einsteinschen Gravitationstheorie 17, 448 (1916)

    Google Scholar 

  46. Ellis, H.G.: Ether flow through a drainhole: a particle model in general relativity. J. Math. Phys. 14, 104 (1973)

    ADS  MathSciNet  Google Scholar 

  47. Kodama, T.: General-relativistic nonlinear field: a kink solution in a generalized geometry. Phys. Rev. D 18, 3529 (1978)

    ADS  MathSciNet  Google Scholar 

  48. Morris, M.S., Thorne, K.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Lobo, F.S.N., Oliveira, M.A.: Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 80, 104012 (2009)

    ADS  MathSciNet  Google Scholar 

  50. Bejarano, C., Lobo, F.S.N., Olmo, G.J., Rubiera-Garcia, D.: Palatini wormholes and energy conditions from the prism of general relativity. Eur. Phys. J. C 77, 776 (2017)

    ADS  Google Scholar 

  51. Lobo, F.S.N.: Exotic solutions in general relativity: traversable wormholes and warp drive spacetimes. Class. Quant. Grav. Res. 5, 1–78 (2008)

    Google Scholar 

  52. Zubair, M., Kousar, F., Bahamonde, S.: Static spherically symmetric wormholes in generalized f(R,\(\phi\)) gravity. Eur. Phys. J. Plus 133, 523 (2018)

    Google Scholar 

  53. Bronnikov, K.A., Kim, S.W.: Possible wormholes in a brane world. Phys. Rev. D 67, 064027 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Tian, D. W.: Traversable wormholes and energy conditions in Lovelock-Brans-Dicke gravity, [arXiv:1508.02291]

  55. Mehdizadeh, M.R., Zangeneh, M.K., Lobo, F.S.N.: Einstein–Gauss–Bonnet traversable wormholes satisfying the weak energy condition. Phys. Rev. D 91, 084004 (2015)

    ADS  MathSciNet  Google Scholar 

  56. Brans, C., Dicke, R.H.: Principle, Mach’s, a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Lu, J., Gao, S., Zhao, Y., Wu, Y.: An accelerated universe from Brans–Dicke theory in the Einstein frame. Eur. Phys. J. Plus 127, 154 (2012)

    Google Scholar 

  58. Banerjee, N., Pavon, D.: Cosmic acceleration without quintessence. Phys. Rev. D 63, 043504 (2001)

    ADS  Google Scholar 

  59. Felice, A.D., Tsujikawa, S.: Generalized Brans–Dicke theories. JCAP 07, 024 (2010)

    Google Scholar 

  60. Boisseau, B.: Exact cosmological solution of a Scalar–Tensor Gravity theory compatible with the CDM model. Phys. Rev. D 83, 043521 (2011)

    ADS  Google Scholar 

  61. Motavali, H., Capozziello, S., Rowshan Almeh Jog, M.: Scalar-tensor cosmology with R\(^{-1}\) curvature correction by Noether Symmetry. Phys. Lett. B 666, 10–15 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Qiang, L., Gong, Y., Ma, Y., Chen, X.: Cosmological implications of 5-dimensional Brans–Dicke Theory. Phys. Lett. B 681, 210–213 (2009)

    ADS  MathSciNet  Google Scholar 

  63. Roy, N., Banerjee, N.: Generalized Brans–Dicke theory: a dynamical systems analysis. Phys. Rev. D 95, 064048 (2017)

    ADS  MathSciNet  Google Scholar 

  64. Xu, L.X., Li, W.B., Lu, J.B.: Holographic dark energy in Brans–Dicke theory. Eur. Phys. J. C 60, 135 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Hrycyna, O., Szydlowski, M.: Dynamical complexity of the Brans–Dicke cosmology. JCAP 12, 016 (2013)

    ADS  Google Scholar 

  66. Ozer, H., Delice, O.: Linearized modified gravity theories with a cosmological term: advance of perihelion and deflection of light. Class. Quantum Grav. 35, 065002 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Freitas, R.C., Goncalves, S.V.B.: Observational constraints of the gravitational waves in the Brans–Dicke theory: Einstein frame and Jordan–Brans–Dicke frame. Phys. Lett. B 703, 209–216 (2011)

    ADS  Google Scholar 

  68. Zhang, X., Yu, J., Liu, T., Zhao, W., Wang, A.: Testing Brans–Dicke gravity using the Einstein telescope. Phys. Rev. D 95, 124008 (2017)

    ADS  MathSciNet  Google Scholar 

  69. Tripathy, S.K., Behera, D., Mishra, B.: Unified dark fluid in Brans–Dicke theory. Eur. Phys. J. C 75, 149 (2015)

    ADS  Google Scholar 

  70. Papagiannopoulos, G., Barrow, J.D., Basilakos, S., et al.: Dynamical symmetries in Brans–Dicke cosmology. Phys. Rev. D 95, 024021 (2017)

    ADS  MathSciNet  Google Scholar 

  71. Sharif, M., Manzoor, R.: Dynamics Rubab of axial symmetric system in self-interacting Brans–Dicke gravity. Eur. Phys. J. C 76, 330 (2016)

    ADS  Google Scholar 

  72. Chiba, T., Smith, T.L., Erickcek, A.L.: System, Solar, constraints to general f(R) gravity. Phys. Rev. D 75, 124014 (2007)

    ADS  Google Scholar 

  73. Olmo, G.J.: Limit to General Relativity in f(R) theories of gravity. Phys. Rev. D 75, 023511 (2007)

    ADS  MathSciNet  Google Scholar 

  74. Feng, B.: The quintom model of dark energy, [arXiv:astro-ph/0602156]

  75. Guo, Z., Piao, Y., Zhang, X., Zhang, Y.: Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 608, 177–182 (2005)

    ADS  Google Scholar 

  76. de la Cruz-Dombriz, A., Dobado, A.: f(R) gravity without a cosmological constant. Phys. Rev. D 74, 087501 (2006)

    ADS  Google Scholar 

  77. Carloni, S., Goswami, R., Dunsby, P.K.S.: A new approach to reconstruction methodsin f(R) gravity. Class. Quant. Grav. 29, 135012 (2012)

    ADS  MATH  Google Scholar 

  78. Dunsby, P.K.S., Elizalde, E., Goswami, R., Odintsov, S., Saez-Gomez, D.: \(\lambda\)CDM universe in f(R) gravity. Phys. Rev. D 82, 023519 (2010)

    ADS  Google Scholar 

  79. Nojiri, S., Odintsov, S.D., Toporensky, A., Tretyakov, P.: Reconstruction and deceleration-acceleration transitions in modified gravity. Gen. Rel. Grav. 42, 1997 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  80. Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374 (2003)

    ADS  Google Scholar 

  81. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  82. Olmo, G.J.: Post-Newtonian constraints on f(R) cosmologies in metric and Palatini formalism. Phys. Rev. D 72, 083505 (2005)

    ADS  Google Scholar 

  83. Faraoni, V.: Solar system experiments do not yet veto modified gravity models. Phys. Rev. D 74, 023529 (2006)

    ADS  Google Scholar 

  84. Navarro, I., Van Acoleyen, K.: f(R) actions, cosmic acceleration and local tests of gravity. JCAP 0702, 022 (2007)

    ADS  Google Scholar 

  85. Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1 (2003)

    ADS  MATH  Google Scholar 

  86. Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D 75, 083504 (2007)

    ADS  Google Scholar 

  87. Carroll, S.M., Sawicki, I., Silvestri, A., Trodden, M.: Modified-source gravity and cosmological structure formation. New J. Phys. 8, 323 (2006)

    ADS  MathSciNet  Google Scholar 

  88. Song, Y.S., Hu, W., Sawicki, I.: Large scale structure of f(R) gravity. Phys. Rev. D 75, 044004 (2007)

    ADS  Google Scholar 

  89. Bean, R., Bernat, D., Pogosian, L., Silvestri, A., Trodden, M.: Dynamics of linear perturbations in f(R) gravity. Phys. Rev. D 75, 064020 (2007)

    ADS  MathSciNet  Google Scholar 

  90. Faulkner, T., Tegmark, M., Bunn, E.F., Mao, Y.: Constraining f(R) gravity as a scalar-tensor theory. Phys. Rev. D 76, 063505 (2007)

    ADS  MathSciNet  Google Scholar 

  91. Hu, W., Sawicki, I.: Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 76, 064004 (2007)

    ADS  Google Scholar 

  92. Starobinsky, A.A.: Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157 (2007)

    ADS  Google Scholar 

  93. Appleby, S.A., Battye, R.A.: Do consistent F(R) models mimic General Relativity plus \(\Lambda\)? Phys. Lett. B 654, 7 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  94. Tsujikawa, S.: Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints. Phys. Rev. D 77, 023507 (2008)

    ADS  Google Scholar 

  95. Baldi, M., Finelli, F., Matarrese, S.: Inflation with violation of the null energy condition. Phys. Rev. D 72, 083504 (2005)

    ADS  Google Scholar 

  96. Santos, J., Alcaniz, J.S., Pires, N., Reboucas, M.J.: Energy conditions and cosmic acceleration. Phys. Rev. D 75, 083523 (2007)

    ADS  MathSciNet  Google Scholar 

  97. Ijjas, A., Ripley, J., Steinhardt, P.J.: NEC violation in mimetic cosmology revisited. Phys. Lett. B 760, 132–138 (2016)

    ADS  MATH  Google Scholar 

  98. Montefalcone, G., Steinhardt, P.J., Wesley, D.H.: Dark Energy, extra dimensions, and the swampland. JHEP 91, 6 (2020)

    MATH  Google Scholar 

  99. Liu, D., Reboucas, M.J.: Energy conditions bounds on f(T) gravity. Phys. Rev. D 86, 083515 (2012)

    ADS  Google Scholar 

  100. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  101. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  102. Buniy, R.V., Hsu, S.D.H., Murray, B.M.: The null energy condition and instability. Phys. Rev. D 74, 063518 (2006)

    ADS  MathSciNet  Google Scholar 

  103. Ludwick, K.J.: Proof of the positive mass theorem. Mod. Phys. Lett. A 32, 28 (2017)

    Google Scholar 

  104. Lobo, F., Crawford, P.: Weak energy condition violation and superluminal travel. Lect. Notes Phys. 617, 277–291 (2003)

    ADS  Google Scholar 

  105. Schon, R., Yau, S.T.: Proof of the positive mass theorem. Commun. Math. Phys. 79, 231 (1981)

    ADS  MathSciNet  Google Scholar 

  106. Cattoen, C., Visser, M.: Cosmological milestones and energy conditions. J. Phys. Conf. Ser. 68, 012011 (2007)

    Google Scholar 

  107. Visser, M.: Lorentzian Wormholes: From Einstein to Hawking, Lorentzian Wormholes: From Einstein to Hawking. AIP, New York (1995)

    Google Scholar 

  108. Hochberg, D., Visser, M.: Dynamic wormholes, antitrapped surfaces, and energy conditions. Phys. Rev. D 58, 044021 (1998)

    ADS  MathSciNet  Google Scholar 

  109. Sokoliuk, O., Baransky, A., Sahoo, P.K.: Probing the existence of the ZTF Casimir wormholes in the framework of f(R) gravity. Nucl Phys B 930, 115845 (2022)

    MathSciNet  MATH  Google Scholar 

  110. Leon, G., Coley, A., Paliathanasis, A.: Static spherically symmetric Einstein–Aether models II: integrability and the modified Tolman–Oppenheimer–Volkoff approach. Ann. Phys. 412, 168002 (2020)

    MATH  Google Scholar 

  111. Bagheri Tudeshki, A., Bordbar, G. H., Eslam Panah, B.: Dark energy star in gravity’s rainbow, [arXiv:2208.07063]

  112. Singh, K.N., Errehymy, A., Rahaman, F.: Exploring physical properties of compact stars in f(R,T)?gravity: an embedding approach. Chin. Phys. C 11(10), 105106 (2020)

    ADS  Google Scholar 

  113. Rahaman, F., Kuhfittig, P.K.F., Ray, S., Islam, N.: Possible existence of wormholes in the galactic halo region. Eur. Phys. J. C 74, 2750 (2014)

    ADS  Google Scholar 

  114. Bayer, C., Belomestny, D., Hager, P., Pigato, P., Schoenmakers, J.: Randomized optimal stopping algorithms and their convergence analysis. SIAM J. Financ. Math. 12(3), 12021–1225 (2021)

    MathSciNet  MATH  Google Scholar 

  115. Abreu, H., Hernandez, H., Nunez, L.A.: sound speeds, cracking and stability of self-gravitating anisotropic compact objects. Class. Quant. Grav. 24, 4631–4646 (2007)

    ADS  MATH  Google Scholar 

  116. Sokoliuk, O., Mandal, S., Sahoo, P.K.: Generalised Ellis–Bronnikov Wormholes in f(R) Gravity. Eur. Phys. J. C 82(4), 280 (2022)

    ADS  Google Scholar 

  117. Rahaman, F., et al.: Noncommutative geometry inspired wormholes with conformal motion. Int. J. Theor. Phys. 54, 699 (2015)

    MathSciNet  MATH  Google Scholar 

  118. Nandi, K.K., Zhang, Y.Z., Cai, R.G., Panchenko, A., et al.: Energetics in condensate star and wormholes. Phys. Rev. D 79, 024011 (2009)

    ADS  Google Scholar 

  119. Katz, J., Lynden-Bell, D., Bicak, J.: Gravitational energy in stationary spacetimes. Class. Quant. Grav. 23, 9111 (2006)

    MathSciNet  MATH  Google Scholar 

  120. Jusufi, K., Jamil, M., Rizwan, M.: On the possibility of wormhole formation in the galactic halo due to dark matter Bose-Einstein condensates. Gen Relativ Gravit 51, 102 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  121. Mishra, A.K., Shweta, U.K.: Non-exotic wormholes in 4-D Einstein–Gauss–Bonnet gravity. Phys. Dark Univ. 35, 100952 (2020)

    Google Scholar 

  122. Samart, D., Tangphati, T., Channuie, P.: Charged traversable wormholes supported by Casimir energy with and without GUP corrections. Nucl. Phys. B 980, 115848 (2022)

    MathSciNet  MATH  Google Scholar 

  123. Lu, J., Zhao, X., Yang, S., Li, J., Liu, M.: Dynamical system approach for the modified Brans–Dicke theory. Int. J. Modern Phys. D 28(10), 1950132 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research work is supported by the National Natural Science Foundation of China (12175095, 12075109 and 11865012), and supported by LiaoNing Revitalization Talents Program (XLYC2007047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Yang, S., Guo, J. et al. Traversable-Wormhole Physics in GBD Theory of Modified Gravity. Found Phys 53, 5 (2023). https://doi.org/10.1007/s10701-022-00644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00644-z

Keywords

Navigation