Skip to main content
Log in

Fracture analysis of a penny-shaped magnetically dielectric crack in a magnetoelectroelastic material

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper we investigate the magnetoelectroelastic behavior induced by a penny-shaped crack in a magnetoelectroelastic material. The crack is assumed to be magnetically dielectric. A closed-form solution is derived by virtue of Hankel transform technique with the introduction of certain auxiliary functions. Field intensity factors are obtained and analyzed. The results indicate that the stress intensity factor depends only on the mechanical loads. However, all the other field intensity factors depend directly on both the magnetic and dielectric permeabilities inside the crack as well as on the applied magnetoelectromechanical loads and the material properties of the magnetoelectroelastic material. Several special cases are further discussed, with the reduced results being in agreement with those from literature. Finally, according to the maximum crack opening displacement (COD) criterion, the effects of the magnetoelectromechanical loads and the crack surface conditions on the crack propagation and growth are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avellaneda M and Harshe G (1994). Magnetoelectric effect in piezoelectric/magnetostrictive multiplayer (2-2) composites. J Intell Mater Syst Struct 5: 501–513

    Article  CAS  Google Scholar 

  • Benveniste Y (1995). Magnetoelectric effect in fibrous composites with piezoelectric and piexomagnetic phases. Phys Rev B 51: 16424–16427

    Article  Google Scholar 

  • Chen WQ and Shioya T (1999). Fundamental solution for a penny-shaped crack in a piezoelectric medium. J Mech Phys Solids 47: 1459–1475

    Article  Google Scholar 

  • Chue CH and Liu TJC (2005). Magneto-electro-elastic antiplane analysis of a biomaterial BaTiO3–CoFe2O4 composite wedge with an interface crack. Theor Appl Fract Mech 44: 275–296

    Article  CAS  Google Scholar 

  • Dunn ML (1994). The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Eng Fract Mech 48: 25–39

    Article  Google Scholar 

  • Feng WJ and Su RKL (2006). Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip. Int J Solids Struct 43: 5196–5216

    Article  Google Scholar 

  • Feng WJ, Xue Y and Zou ZZ (2005). Crack growth of an interface crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric magnetic impact. Theor Appl Fract Mech 43: 376–394

    Article  CAS  Google Scholar 

  • Feng WJ, Pan E and Wang X (2007). Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int J Solids Struct 44: 7944–7955

    Google Scholar 

  • Gao CF and Fan WX (1999). Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack. Int J Solids Struct 36: 2527–2540

    Article  Google Scholar 

  • Gao CF and Noda N (2004). Thermal-induced interfacial cracking of magnetoelectroelastic materials. Int J Eng Sci 42: 1347–1360

    Article  Google Scholar 

  • Gao CF, Tong P and Zhang TY (2003). Interfacial crack problems in magneto-electroelastic solids. Int J Eng Sci 41: 2105–2121

    Article  Google Scholar 

  • Hao TH and Shen ZY (1994). A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47: 793–802

    Article  Google Scholar 

  • Harshe G, Dougherty JP and Newnham RE (1993). Theoretical modeling of 3-0/0-3 magnetoelectric composites. Int J Appl Electromagn Mech 4: 161–171

    Google Scholar 

  • Hu KQ and Li GQ (2005). Electro-magneto-elastic analysis of a piezoelectromagnetic strip with a finite crack under longitudinal shear. Mech Mater 37: 925–934

    Article  Google Scholar 

  • Hu KQ, Kang YL and Li GQ (2006). Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta Mech 182: 1–16

    Article  Google Scholar 

  • Huang JH and Kuo WS (1997). The analysis of piezoelectric/piezomagnetic composite materials containing an ellipsoidal inhomogeneity. J Appl Phys 81: 1378–1386

    Article  CAS  Google Scholar 

  • Jiang LZ and Sun CT (2001). Analysis of indentation cracking in piezoceramics. Int J Solids Struct 38: 1903–1918

    Article  Google Scholar 

  • Karapetian E, Sevostianov I and Kachanov M (2000). Penny-shaped and half-plane cracks in a transversely isotropic piezoelectric solid under arbitrary loading. Arch Appl Mech 70: 201–229

    Google Scholar 

  • Kirchner HOK and Alshits I (1996). Elastically anisotropic angularly inhomogeneous media II. The Green’s function for piezoelectric, piezomagnetic and magnetoelectric media. Philos Mag A 74: 861–885

    Article  CAS  Google Scholar 

  • Kogan L, Hui CY and Molcov V (1996). Stress and induction eld of a spheroidal inclusion of a penny-shaped crack in a transversely isotropic piezoelectric material. Int J Solids Struct 33: 2719–2737

    Article  Google Scholar 

  • Li JY and Dunn ML (1998). Micromechanics of magneto-electro-elastic composite materials: average fields and effective behavior. J Intell Mater Syst Struct 9: 404–416

    Article  Google Scholar 

  • Li R and Kardomateas GA (2006). The Mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials. J Appl Mech 73: 220–227

    Article  Google Scholar 

  • Li XF and Lee KY (2004). Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer. J Mech Phys Solids 42: 2079–2100

    Article  CAS  Google Scholar 

  • Liu JX, Liu X and Zhao Y (2001). Explicit expressions of the generalized Barnett–Lothe tensors for anisotropic piezoelectric materials. Int J Eng Sci 39: 1803–1814

    Article  Google Scholar 

  • McMeeking RM (1999). Crack tip energy release rate for a piezoelectric compact tension specimen. Eng Fract Mech 64: 217–244

    Article  Google Scholar 

  • McMeeking RM (2001). Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int J Fract 108: 25–41

    Article  Google Scholar 

  • Nan CW (1994). Magneto-electric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B 50: 6082–6088

    Article  CAS  Google Scholar 

  • Niraula OP and Wang BL (2006). A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading. Acta Mech 187: 151–168

    Article  Google Scholar 

  • Pak YE (1990). Crack extension force in a piezoelectric material. J Appl Mech 57: 647–653

    Google Scholar 

  • Pak YE (1992). Linear electroelastic fracture mechanics of piezoelectric materials. Int J Fract 54: 79–100

    Article  CAS  Google Scholar 

  • Park S and Sun CT (1995). Fracture criteria for piezoelectric ceramics. J Am Ceram Soc 78: 1475–1480

    Article  CAS  Google Scholar 

  • Parton VZ (1976). Fracture mechanics of piezoelectric materials. Acta Astron 3: 671–683

    Article  Google Scholar 

  • Song ZF and Sih GC (2003). Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor Appl Fract Mech 39: 189–207

    Article  CAS  Google Scholar 

  • Sosa H and Khutoryansky N (1996). New developments concerning piezoelectric materials with defects. Int J Solids Struct 33: 3399–3414

    Article  Google Scholar 

  • Tian WY and Gabbert U (2005). Macrocrack–microcrack interaction problem in magnetoelectroelastic solids. Mech Mater 37: 565–592

    Article  Google Scholar 

  • Wang B (1992). Three-dimensional analysis of a flat elliptical crack in a piezoelectric material. Int J Eng Sci 30: 781–791

    Article  Google Scholar 

  • Wang XD and Jiang LY (2002). Fracture behavior of cracks in piezoelectric media with electromechanically coupled boundary conditions. Proc R Soc Lond Ser A 458: 2545–2560

    Google Scholar 

  • Wang XD and Jiang LY (2004). The nonlinear fracture behavior of an arbitrary originated dielectric crack in piezoelectric materials. Acta Mech 172: 195–210

    Article  Google Scholar 

  • Wang BL and Mai YW (2003). On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int J Eng Sci 41: 633–652

    Article  CAS  Google Scholar 

  • Wang BL and Mai YW (2004). Fracture of piezoelectromagnetic materials. Mech Res Commun 31: 65–73

    Article  Google Scholar 

  • Wang BL and Mai YW (2007). Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int J Solids Struct 44: 387–398

    Article  Google Scholar 

  • Xu XL and Rajapakse RKND (2001). On a plane crack in piezoelectric solids. Int J Solids Struct 38: 7643–7658

    Article  Google Scholar 

  • Yang JH and Lee KY (2002). Three-dimensional non-axisymmetric behavior of a penny-shaped crack in a piezoelectric strip subjected to in-plane loads. Eur J Mech A/Solids 21: 223–237

    Article  CAS  Google Scholar 

  • Yang JH and Lee KY (2003). Penny shaped crack in a piezoelectric cylinder surrounded by an elastic medium subjected to combined in-plane mechanical and electrical loads. Int J Solids Struct 40: 573–590

    Article  Google Scholar 

  • Zhang TY, Qian CF and Tong P (1998). Linear electroelastic analysis of a cavity or a crack in a piezoelectric material. Int J Solids Struct 35: 2121–2149

    Article  Google Scholar 

  • Zhang TY, Zhao MH and Tong P (2002). Fracture of piezoelectric ceramics. Adv Appl Mech 38: 147–289

    Article  Google Scholar 

  • Zhao MH, Yang F and Liu T (2006). Analysis of a penny-shaped crack in a magneto-electro-elastic medium. Philos Mag 86: 4397–4416

    Article  CAS  Google Scholar 

  • Zhou ZG, Wang B and Sun YG (2004). Two collinear interface cracks in magneto-electro-elastic composites. Int J Eng Sci 42: 1155–1167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. L. Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, W.J., Su, R.K.L. & Pan, E. Fracture analysis of a penny-shaped magnetically dielectric crack in a magnetoelectroelastic material. Int J Fract 146, 125–138 (2007). https://doi.org/10.1007/s10704-007-9150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-007-9150-x

Keywords

Navigation