Skip to main content
Log in

Gradient Elastic Stress Analysis for Anisotropic Bimaterial Interface with Arbitrarily Oriented Crack

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Singularities occurring at a crack tip are a well known phenomenon; gradient elasticity has been proven to have the ability to remove singularities through additional length scale parameters which at the same time provides extra microstructural information of the material. This study uses gradient elasticity to simulate singularity-free stresses at bi-material bone-implant interfaces and outlines the relationship between the fracture orientation and maximum stresses at crack tip depicted by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aifantis E.C. (1992) On the role of gradients in the localization of deformation and fracture. International Journal of Engineering Science 30: 1279–1299

    Article  Google Scholar 

  • Altan S.B., Aifantis E.C. (1992) On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia 26: 319–324

    Article  Google Scholar 

  • Askes H., Morata I., Aifantis E.C. (2008) Finite element analysis with staggered gradient elasticity. Computers & Structures 86: 1266–1279

    Article  Google Scholar 

  • Askes H., Gitman I.M. (2009) Non-singular stresses in gradient elasticity at bi–material interface with transverse crack. International Journal of Fracture 156: 217–222

    Article  Google Scholar 

  • Askes H., Aifantis E.C. (2011) Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. International Journal of Solids and Structures 48: 1962–1990

    Article  Google Scholar 

  • Barut A., Guven I., Madenci E. (2001) Analysis of singular stress fields at junctions of multiple dissimilar materials under mechanical and thermal loading. International Journal of Solids and Structures 38: 9077–9109

    Article  Google Scholar 

  • Carpinteri A., Paggi M. (2007) Analytical study of the singularities arising at multi-material interfaces in 2D linear elastic problems. Engineering Fracture Mechanics 74: 59–74

    Article  Google Scholar 

  • Dhert W.J.A., Verheyen C.C.P.M., Braak L.H., De Wijn J.R., Klein C.P.A.T., De Groot K., Rozing P.M. (1992) A finite element analysis of the push-out test: Influence of test conditions. Journal of Biomedical Materials Research 26: 119–130

    Article  CAS  Google Scholar 

  • Fenner D.N. (1976) Stress singularities in composite materials with an arbitrarily oriented crack meeting an interface. International Journal of Fracture 12: 705–721

    Google Scholar 

  • Gitman I.M., Askes H., Kuhl E., Aifantis E.C. (2010) Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. International Journal of Solids and Structures 47: 1099–1107

    Article  Google Scholar 

  • Gitman I.M., Askes H., Sluys L.J. (2007) Representative volume: existence and size determination. Engineering Fracture Mechanics 74: 2518–2534

    Article  Google Scholar 

  • Gitman I.M., Askes H., Aifantis E.C. (2005) The Representative Volume size in static and dynamic micro-macro transitions. International Journal of Fracture 135: L3–L9

    Article  Google Scholar 

  • Kunin I.A. (1982). Elastic media with microstructure. I - One-dimensional models., eds. M. Cardona et al., Springer-Verlag, Berlin, Heidelberg, New York

  • Kunin I.A. (1983). Elastic media with microstructure. II - Three-dimensional models, eds. M. Cardona et al., Springer-Verlag, Berlin, Heidelberg, New York

  • Mindlin R.D. (1964) Micro-structure in linear elasiticity. Archive for Rational Mechanics and Analysis 16: 51–78

    Article  Google Scholar 

  • Ninan T.M., Costa M.L., Krikler S.J. (2007) Classification of femoral periprosthetic fractures Injury. Int. J. Care Injured 38: 661–668

    Article  CAS  Google Scholar 

  • Rho J.-Y. (1996) An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics 34: 777–783

    Article  CAS  Google Scholar 

  • Rho J.-Y., Kuhn-Spearing L., Zioupos P. (1998) Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics 20: 92–102

    Article  CAS  Google Scholar 

  • Ru C., Aifantis E. (1993) A simple approach to solve boundary-value problems in gradient elasticity. Acta Mechanica 101: 59–68

    Article  Google Scholar 

  • Vashishth D. (2007) Hierarchy of bone microdamage at multiple length scales. International Journal of Fatigue 29: 1024–1033

    Article  CAS  Google Scholar 

  • Zervos A. (2008) Finite elements for elasticity with microstructure and gradient elasticity. International Journal for Numerical Methods in Engineering 73: 564–595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Ting Kwong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwong, M.T., Gitman, I.M. Gradient Elastic Stress Analysis for Anisotropic Bimaterial Interface with Arbitrarily Oriented Crack. Int J Fract 173, 79–85 (2012). https://doi.org/10.1007/s10704-011-9669-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9669-8

Keywords

Navigation