Skip to main content
Log in

Numerical analysis of dynamic crack propagation in rubber

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In the present paper, dynamic crack propagation in rubber is analyzed numerically using the finite element method. The problem of a suddenly initiated crack at the center of stretched sheet is studied under plane stress conditions. A nonlinear finite element analysis using implicit time integration scheme is used. The bulk material behavior is described by finite-viscoelasticity theory and the fracture separation process is characterized using a cohesive zone model with a bilinear traction-separation law. Hence, the numerical model is able to model and predict the different contributions to the fracture toughness, i.e. the surface energy, viscoelastic dissipation, and inertia effects. The separation work per unit area and the strength of the cohesive zone have been parameterized, and their influence on the separation process has been investigated. A steadily propagating crack is obtained and the corresponding crack tip position and velocity history as well as the steady crack propagation velocity are evaluated and compared with experimental data. A minimum threshold stretch of 3.0 is required for crack propagation. The numerical model is able to predict the dynamic crack growth. It appears that the strength and the surface energy vary with the crack speed. Finally, the maximum principal stretch and stress distribution around steadily propagation crack tip suggest that crystallization and cavity formation may take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahagon A, Gent AN (1975) Threshold fracture energies for elastomers. J Polym Sci Polym Phys Edition 13: 1903–1911

    Article  CAS  Google Scholar 

  • Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50(7): 1701–1736

    Article  Google Scholar 

  • Andrew EH, Kinloch AJ (1973) Mechanics of adhesive failure. I, II. Proc R Soc Lond A332:385–399, 401–414

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7: 55–129

    Article  Google Scholar 

  • Bayraktar E, Bessri K, Bathias C (2008) Deformation behaviour of elastomeric matrix composites under static loading conditions. Eng Fract Mech 75: 2695–2706

    Article  Google Scholar 

  • Bergström JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys solids 46: 931–954

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938

    Article  Google Scholar 

  • Chen CH, Zhang HP, Niemczura J, Ravi-Chandar K, Marder M (2011) Scaling of crack propagation in rubber sheets. EPL 96: 36009

    Article  Google Scholar 

  • Chung B, Funt JM, Ouyang GB (1991) Effects of carbon black on elastomer ultimate properties—IR compounds. Rubber World 5: 46–51

    Google Scholar 

  • Corigliano A, Ricci M (2001) Rate-dependent interface models: formulation and numerical applications. Int J Solids Struct 2001(38): 547–576

    Article  Google Scholar 

  • Corigliano A, Mariani S (2001) Parameter identification of a time-dependent elasticdamage interface model for the simulation of debonding in composites. Compos Sci Technol 2001(61): 191–203

    Article  Google Scholar 

  • Corigliano A, Mariani S, Pandolfi A (2003) Numerical modeling of rate-dependent debonding processes in composites. Compos Struct 2003(61): 39–50

    Article  Google Scholar 

  • Cristiano A, Marcellan A, Long R, Hui CY, Stolk J, Creton C (2010) An experimental investigation of fracture by cavitation of model elastomeric networks. J Polym Sci B Polym Phys 48: 1409–1422

    Article  CAS  Google Scholar 

  • Deegan RD, Petersan PJ, Marder M, Swinney HL (2002) Oscillating fracture paths in rubber. Phys Rev Lett 88: 1–4

    Google Scholar 

  • de Gennes PG (1996) Soft adhesives. Langmuir 12: 4497–4500

    Article  Google Scholar 

  • de Gennes PG (1997) Soft interfaces. The 1994 Dirac memorial lecture. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dragoni E, Medri G (1988) Fracture toughness evaluation of natural rubber. Theor Appl Fract Mech 10: 79–83

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8: 100–104

    Article  Google Scholar 

  • Ferry JD, Mancke RG, Maekawa E, Oyanagi Y, Dickie RA (1964) Dynamic mechanical properties of cross-linked rubbers. I. effects of cross-link spacing in natural rubber. J Phys Chem 68: 3414–3418

    Article  CAS  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Geißler G, Kaliske M, Grellman W, Nase M (2007) Peel process simulation of sealed polymeric film: computational modelling of experimental results. Eng Comput 24: 586–607

    Article  Google Scholar 

  • Gent AN, Tompkins DA (1969) Surface energy effects for small holes or particles in elastomers. J Polym Sci 7(A-2): 1483–1488

    CAS  Google Scholar 

  • Gent AN, Schultz J (1972) Effect of wetting liquids on strength of adhesion of viscoelastic materials. J Adhes 3: 281–294

    Article  CAS  Google Scholar 

  • Gent AN, Kim HJ (1978) Tear strength of stretched rubber. Rubber Chem Technol 51: 35–44

    Article  CAS  Google Scholar 

  • Gent AN, Marteny P (1982a) Crack velocities in natural rubber. J Mater Sci 17: 2955–2960

    Article  CAS  Google Scholar 

  • Gent AN, Marteny P (1982b) The effect of strain upon the velocity of sound and the velocity of free retraction for natural rubber. J Appl Phys 53: 6069–6074

    Article  CAS  Google Scholar 

  • Gent AN, Wang C (1991) Fracture mechanics and cavitation in rubber-like solids. J Mater Sci 26: 3392–3395

    Article  Google Scholar 

  • Gent AN, Lai SM (1994) Interfacial bonding, energy dissipation and adhesion. J Polym Sci C 32: 1543–1555

    Article  CAS  Google Scholar 

  • Gent AN (1996) Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties?. Langmuir 12: 4492–4496

    Article  CAS  Google Scholar 

  • Greensmith HW, Thomas AG (1955) Rupture of rubber. III. Determination of tear properties. J Polym Sci 18: 189–200

    Article  CAS  Google Scholar 

  • Greensmith HW (1964) Rupture of rubber. XI. Tensile rupture and crack growth in a noncrystallizing rubber. J Appl Polym Sci 8: 1113–1128

    Article  CAS  Google Scholar 

  • Harper PW, Hallett SR (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 7(16): 4774–4792

    Article  Google Scholar 

  • Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93: 1–4

    Article  Google Scholar 

  • Hibbit Karlsson, Sorensen Abaqus Theory and User’s Manual. Inc., Pawtucket, RI

  • Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct 5: 283–292

    Article  Google Scholar 

  • Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6: 773–781

    Article  Google Scholar 

  • Horgan CO, Polignone DA (1995) Cavitation in nonlinearly elastic solids: a review. Appl Mech Rev 48: 471–485

    Article  Google Scholar 

  • Hoo Fatt MS, Chen L, Al-Quraishi AA (2011) Fracture parameters for natural rubber under dynamic loading. Strain 47: 505–518

    Article  Google Scholar 

  • Hui CY, Xu DB, Kramer EJ (1992) A fracture model for weak interface in a viscoelastic material (small scale yielding analysis). J Appl Phys 72(8): 3294–3304

    Article  CAS  Google Scholar 

  • Kawabata S, Kawai H (1977) Strain energy density functions of rubber vulcanizates from biaxial extension. Adv Polym Sci 24: 89–124

    Article  CAS  Google Scholar 

  • Knauss WG (1993) Time dependent fracture and cohesive zones. J Eng Mater Technol Trans ASME 115: 262–267

    Article  Google Scholar 

  • Kolsky H (1969) Production of tensile shock waves in stretched natural rubber. Nature 224: 1301

    Article  CAS  Google Scholar 

  • Kroon M (2011) Steady-state crack growth in rubber-like solids. Int J Fract 169: 49–60

    Article  Google Scholar 

  • Lake GJ, Lindley PB (1964) Ozone cracking, flex cracking and fatigue of rubber. Rubber J 146: 24–30

    CAS  Google Scholar 

  • Lake GJ, Lindley PB (1965) The mechanical fatigue limit for rubber. J Appl Polym Sci 9: 1233–1251

    Article  Google Scholar 

  • Lake GJ, Thomas AG (1967) The strength of highly elastic materials. Proc R Soc Lond A 300: 108–119

    Article  CAS  Google Scholar 

  • Lake GJ, Lawrence CC, Thomas AG (2000) High-speed fracture of elastomers: part I. Rubber Chem Technol 73: 801–817

    Article  CAS  Google Scholar 

  • Lee DJ, Donovan JA (1987) Microstructural changes in the crack tip region of carbon-black-filled natural rubber. Rubber Chem. Technol. 60:910

    Google Scholar 

  • Lin YY, Hui CY (2004) Cavity growth from crack-like defects in soft materials. Int J Fract 126(3): 205–221

    Article  CAS  Google Scholar 

  • Lopez-Pamies O, Idiart MI, Nakamura T (2011) Cavitation in elastomeric solids: II—Onset-of-cavitation surfaces for Neo-Hookean materials. J Mech Phys solids 59(8): 1488–1505

    Article  Google Scholar 

  • Marder M (2005) Shock-wave theory for rupture of rubber. Phys Rev Lett 94: 1–4

    Article  Google Scholar 

  • Marder M (2006) Supersonic rupture of rubber. J Mech Phys Solids 54: 491–532

    Article  CAS  Google Scholar 

  • Mueller HK, Knauss WG (1971) The fracture energy and some mechanical properties of a polyurethane elastomer. Trans Soc Rheol 15: 217–233

    Article  CAS  Google Scholar 

  • Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525–531

    Article  Google Scholar 

  • Needleman A (1990) An analysis of tensile decohesion along an interface. J Mech Phys Solids 38: 289–324

    Article  Google Scholar 

  • Ogden RW (1972) Large deformation isotropic elasticity—On the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol 326, pp 565–584

  • Persson PNJ, Albohr O, Heinrich G, Ueba H (2005) Crack propagation in rubber-like materials. J Phys Condens Matter 17: R1071–R1142

    Article  CAS  Google Scholar 

  • Petersan PJ, Deegan RD, Marder M, Swinney HL (2004) Cracks in rubber under tension exceed the shear wave speed. Phys Rev Lett 93: 1–4

    Article  Google Scholar 

  • Rahul-Kumar P, Jagota A, Bennison SJ, Saigal S, Muralidhar S (1999) Polymer interfacial fracture simulations using cohesive elements. Acta Mater 47: 4161–4169

    Article  CAS  Google Scholar 

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Amsterdam

    Google Scholar 

  • Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci 10: 291–318

    Article  CAS  Google Scholar 

  • Rice JR (1968) Mathematical analysis in the mechanics of fracture. In: Liebowitz H (ed) Fracture: an advanced treatise, vol 2. Elsevier, Amsterdam pp 191–311

    Google Scholar 

  • Rice JR (1978) Mechanics of quasi-static crack growth. In: Proceedings of 8th U.S. National congress on mechanics, pp 191–216

  • Rice JR, Jian-sheng W (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng 107: 23–40

    Article  Google Scholar 

  • Schellekens JCJ, de Borst R (1992) On the numerical integration of interface elements. Int J Numer Methods Eng 36: 43–66

    Article  Google Scholar 

  • Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Method Appl M 60: 153–173

    Article  Google Scholar 

  • Thomas AG (1994) The development of fracture mechanics for elastomers. Rubber Chem Technol 67: G50–G60

    Article  CAS  Google Scholar 

  • Trabelsi S, Albouy PA, Rault J (2002) Stress-induced crystallization around a crack tip in natural rubber. Macromolecules 35(27): 10054–10061

    Article  CAS  Google Scholar 

  • Tvergaard V. (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng A 125: 203–213

    Article  Google Scholar 

  • Wang W (2005) Hyperelasticity, viscoelasticity, and nonlocal elasticity govern dynamic fracture in rubber. Phys Rev Lett 95: 1–4

    Google Scholar 

  • Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng 1: 111–132

    Article  Google Scholar 

  • Zhang HP, Niemczura J, Dennis G, RaviChandar K, Marder M (2009) Toughening effect of strain-induced crystallites in natural rubber. Phys Rev Lett 102: 245503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kroon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmukashfi, E., Kroon, M. Numerical analysis of dynamic crack propagation in rubber. Int J Fract 177, 163–178 (2012). https://doi.org/10.1007/s10704-012-9761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9761-8

Keywords

Navigation