Skip to main content
Log in

Nucleation under multi-axial loading in variational phase-field models of brittle fracture

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Phase-field models of brittle fracture can be regarded as gradient damage models including an intrinsic internal length. This length determines the stability threshold of solutions with homogeneous damage and thus the strength of the material, and is often tuned to retrieve the experimental strength in uniaxial tensile tests. In this paper, we focus on multiaxial stress states and show that the available energy decompositions, introduced to avoid crack interpenetration and to allow for unsymmetric fracture behavior in tension and compression, lead to multiaxial strength surfaces of different but fixed shapes. Thus, once the length scale is tailored to recover the experimental tensile strength, it is not possible to match the experimental compressive or shear strength. We propose a new energy decomposition that enables the straightforward calibration of a multi-axial failure surface of the Drucker-Prager type. The new decomposition, which hinges upon the theory of structured deformations, encompasses the volumetric-deviatoric and the no-tension models as special cases. Preserving the variational structure of the model, it includes an additional free parameter that can be calibrated based on the experimental ratio of the compressive to the tensile strength (or, if possible, of the shear to the tensile strength), as successfully demonstrated on two data sets taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  MATH  Google Scholar 

  • Angelillo M (1993) Constitutive relations for no-tension materials. Meccanica 28(3):195–202

    Article  MATH  Google Scholar 

  • Ballard P (2013) Steady sliding frictional contact problems in linear elasticity. J Elast 110(1):33–61

    Article  MathSciNet  MATH  Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B, Francfort G-A, Marigo J-J (2000a) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:787–826

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B, Francfort G, Marigo J-J (2000b) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for con-crete. Int J Solids Struct 38(36):6427–6454

    Article  MATH  Google Scholar 

  • Cuomo M, Ventura G (2000) A complementary energy formulation of no tension masonry-like solids. Comput Methods Appl Mech Eng 189(1):313–339

    Article  MathSciNet  MATH  Google Scholar 

  • Del Piero G (1989) Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24(3):150–162

    Article  MathSciNet  MATH  Google Scholar 

  • Del Piero G, Owen DR (1993) Structured deformations of continua. Arch Rational Mech Anal 124(2):99–155

    Article  MathSciNet  MATH  Google Scholar 

  • Ely RE (1972) Strength of titania and aluminum silicate under combined stresses. J Am Ceramic Soc 55(7):347–350

    Article  Google Scholar 

  • Francfort G, Bourdin B, Marigo J-J (2008) The variational approach to fracture. J Elast 91(1–3):5–148

    MathSciNet  MATH  Google Scholar 

  • Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  • Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: a unified approach. J Mech Phys Solids 58:1154–1174

    Article  MathSciNet  MATH  Google Scholar 

  • Giacomini A (2005) Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc Variations Partial Differ Equ 22:129–172

    Article  MathSciNet  MATH  Google Scholar 

  • Giaquinta M, Giusti E (1985) Researches on the equilibrium of masonry structures. Arch Rational Mech Anal 88(4):359–392

    Article  MathSciNet  MATH  Google Scholar 

  • Goggin PR, Reynolds WN (1967) The elastic constants of reactor graphites. Philos Mag 16(140):317–330

    Article  Google Scholar 

  • Iuga M, Steinle-Neumann G, Meinhardt J (2007) Ab-initio simulation of elastic constants for some ceramic materials. Eur Phys J B 58(2):127–133

    Article  Google Scholar 

  • Kumar A, Bourdin B, Francfort GA, Lopez-Pamies O (2020) Revisiting nucleation in the phase-field approach to brittle fracture. J Mech Phys Solids 142:104027

    Article  MathSciNet  Google Scholar 

  • Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. A practical application to the French Panthéon in Paris. J Elast 95:1–30

    Article  MATH  Google Scholar 

  • Larsen CJ (2010) Epsilon-stable quasi-static brittle fracture evolution. Commun Pure Appl Math 63(5):630–654

    MathSciNet  MATH  Google Scholar 

  • Li T (2016) Gradient-damage modeling of dynamic brittle fracture: variational principles and numerical simulations. PhD thesis

  • Lorentz E (2017) A nonlocal damage model for plain concrete consistent with cohesive fracture. Int J Fract 207(2):123–159

    Article  Google Scholar 

  • Lucchesi M, Padovani C, Zani N (1996) Masonry-like solids with bounded compressive strength. Int J Solids Struct 33(14):1961–1994

    Article  MathSciNet  MATH  Google Scholar 

  • Marigo J (1989) Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nuclear Eng Des 114(3):249–272

    Article  Google Scholar 

  • Marigo J-J, Maurini C, Pham K (2016) An overview of the modelling of fracture by gradient damage models. en. Meccanica 51(12):3107–3128

    Article  MathSciNet  MATH  Google Scholar 

  • Mesgarnejad A, Bourdin B, Khonsari MM (2015) Validation simulations for the variational approach to fracture. Comput Methods Appl Mech Eng 290:420–437

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numeri Methods Eng 83(10):1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  • Negri M (2010) A comparative analysis on variational models for quasi-static brittle crack propagation. Adv Calc Variations 3(2):149–212

    MathSciNet  MATH  Google Scholar 

  • Nguyen TT, Yvonnet J, Bornert M, Chateau C, Sab K, Romani R, Le Roy R (2016) On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int J Fracture 197(2):213–226

    Article  Google Scholar 

  • Pham K, Amor H, Marigo J-J, Maurini C (2011a) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20(4):618–652

    Article  Google Scholar 

  • Pham K, Marigo J-J (2010a) The variational approach to damage: II. The gradient damage models [Approche variationnelle de l’endommagement: II. Les modèles à gradient]. Comptes Rendus Mécanique 338(4):199–206

  • Pham K, Marigo J-J (2013) Stability of homogeneous states with gradient damage models: size effects and shape effects in the three-dimensional setting. J Elast 110(1):63–93

    Article  MathSciNet  MATH  Google Scholar 

  • Pham K, Marigo J-J, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J Mech Phys Solids 59(6):1163–1190

    Article  MathSciNet  MATH  Google Scholar 

  • Pham KH, Ravi-Chandar K, Landis CM (2017) Experimental validation of a phase-field model for fracture. Int J Fracture 205(1):83–101

    Article  Google Scholar 

  • Pham K, Amor H, Marigo J-J, Maurini C (2011c) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20(4):618–652

    Article  Google Scholar 

  • Pham K, Marigo J-J (2010b) Approche variationnelle de l’endommagement: II. Les modèles à gradient. Comptes Rendus Mecanique 338(4):199–206

  • Sacco E (1990) Modellazione e calcolo di strutture in materiale non resistente a trazione. ita. In: Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1(3), 235–258

  • Sato S, Awaji H, Kawamata K, Kurumada A, Oku T (1987) Fracture criteria of reactor graphite under multiaxial stesses. Nuclear Eng Des 103(3):291–300

    Article  Google Scholar 

  • Sicsic P, Marigo J-J, Maurini C (2014) Initiation of a periodic array of cracks in the thermal shock problem: a gradient damage modeling. J Mech Phys Solids 63:256–284

    Article  MathSciNet  MATH  Google Scholar 

  • Tanné E, Li T, Bourdin B, Marigo J-J, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80–99

    Article  MathSciNet  Google Scholar 

  • Wu T, Carpiuc-Prisacari A, Poncelet M, De Lorenzis L (2017) Phase-field simulation of interactive mixed-mode fracture tests on cement mortar with full-field displacement boundary conditions. Eng Fracture Mech 182:658–688

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Maurini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The spectral strain energy decomposition

The stress-strain relationship is again given by Eq.(17a17b) with

$$\begin{aligned} \varvec{\sigma }_{D}=\lambda \mathrm {tr}^{+}\left( \varvec{\varepsilon }\right) {\mathbf {I}}+2\mu \varvec{\varepsilon }^{+}\quad \varvec{\sigma }_{R}=\lambda \mathrm {tr}^{-}\left( \varvec{\varepsilon }\right) {\mathbf {I}}+2\mu \varvec{\varepsilon }^{-} \end{aligned}$$

which can be inverted most easily in component form. Thus, whereas the strain domain is directly obtained as

$$\begin{aligned} {\mathcal {R}}\left( \alpha \right)= & {} \left\{ \varvec{\varepsilon }\in \mathrm {Sym}:\frac{1}{2}\lambda \left[ \mathrm {tr}^{+}\left( \varvec{\varepsilon }\right) \right] ^{2}\right. \\&\left. +\,\,\mu \varvec{\varepsilon }^{+}\cdot \varvec{\varepsilon }^{+}\le -\frac{w_{1}w'\left( \alpha \right) }{a'\left( \alpha \right) }\right\} \end{aligned}$$

the stress domain must be found componentwise by distinguishing several cases. Assuming, without loss of generality, \(\varepsilon _{1}\ge \varepsilon _{2}\ge \varepsilon _{3}\), \({\mathcal {R}}^{*}\left( \alpha \right) \) is obtained as the set of \(\varvec{\sigma }\in Sym\) such that

  • if \(\sigma _{3}-\nu \left( \sigma _{1}+\sigma _{2}\right) \ge 0\)

    $$\begin{aligned} \frac{1}{18\kappa }\mathrm {tr}^{2}\left( \varvec{\sigma }\right) +\frac{1}{4\mu }\left\| \varvec{\sigma }_{\mathrm {dev}}\right\| ^{2} \le \frac{w_{1}w'\left( \alpha \right) }{s'\left( \alpha \right) } \end{aligned}$$
  • else if \(\left[ \left( 1+a\left( \alpha \right) \right) \lambda +2\mu \right] \sigma _{2}-\lambda \sigma _{1}-a\left( \alpha \right) \lambda \sigma _{3}\ge 0\) and \(\sigma _{1}+\sigma _{2}+a\left( \alpha \right) \sigma _{3}\ge 0\)

    $$\begin{aligned}&\frac{1}{4a^{2}\left( \alpha \right) \mu \left[ \left( 2+a\left( \alpha \right) \right) \lambda +2\mu \right] ^{2}}\\&\qquad \cdot \left\{ 4\mu ^{2}\left( \sigma _{1}^{2}+\sigma _{2}^{2}\right) +2\lambda \mu \left[ \left( 3+2a\left( \alpha \right) \right) \sigma _{1}^{2}\right. \right. \\&\left. \qquad -2\sigma _{1}\sigma _{2}+\left( 3+2a\left( \alpha \right) \right) \sigma _{2}^{2}+a^{2}\left( \alpha \right) \sigma _{3}^{2}\right] \\&\qquad +\lambda ^{2}\left[ \left( 2+2a\left( \alpha \right) +a^{2}\left( \alpha \right) \right) \left( \sigma _{1}^{2}+\sigma _{2}^{2}\right) \right. \\&\qquad -2a^{2}\left( \alpha \right) \sigma _{2}\sigma _{3}+2a^{2}\left( \alpha \right) \sigma _{3}^{2}\\&\qquad \left. \left. -2\sigma _{1}\left( 2\sigma _{2}+2a\left( \alpha \right) \sigma _{2}+a^{2}\left( \alpha \right) \sigma _{3}\right) \right] \right\} \\&\quad \le -\frac{w_{1}w'\left( \alpha \right) }{a'\left( \alpha \right) } \end{aligned}$$
  • else if \(\left[ \left( 1+a\left( \alpha \right) \right) \lambda +2a\left( \alpha \right) \mu \right] \sigma _{2}-\lambda \sigma _{1}-a\left( \alpha \right) \lambda \sigma _{3}\ge 0\) and \(\sigma _{1}+\sigma _{2}+a\left( \alpha \right) \sigma _{3}\le 0\)

    Table 4 Tensile, compressive and shear strengths according to all considered models (we assume here \(\nu >-1/4\))
    $$\begin{aligned}&\frac{1}{4a^{2}\left( \alpha \right) \mu \left[ \left( 2+a\left( \alpha \right) \right) \lambda +2a\left( \alpha \right) \mu \right] ^{2}}\\&\quad \cdot \left\{ \left[ \left( \lambda +a\left( \alpha \right) \lambda +2a\left( \alpha \right) \mu \right) \sigma _{1}-\lambda \sigma _{2}-a\left( \alpha \right) \lambda \sigma _{3}\right] ^{2}\right. \\&\qquad +\left. \left[ \left( \lambda \!+\!a\left( \alpha \right) \lambda \!+\!2a\left( \alpha \right) \mu \right) \sigma _{2}\!-\!\lambda \sigma _{1}\!-\!a\left( \alpha \right) \lambda \sigma _{3}\right] ^{2}\right\} \\&\quad \le -\frac{w_{1}w'\left( \alpha \right) }{a'\left( \alpha \right) } \end{aligned}$$
  • else if \(2\mu \sigma _{1}+a\left( \alpha \right) \lambda \left( 2\sigma _{1}-\sigma _{2}-\sigma _{3}\right) \ge 0\) and \(\sigma _{1}+a\left( \alpha \right) \left( \sigma _{2}+\sigma _{3}\right) \ge 0\)

    $$\begin{aligned}&\frac{1}{4a^{2}\left( \alpha \right) \mu \left[ \left( 1+2a\left( \alpha \right) \right) \lambda +2\mu \right] ^{2}}\\&\quad \cdot \left\{ \left[ \left( 8a\left( \alpha \right) +2\right) \lambda \mu +4\mu ^{2}\right] \sigma _{1}^{2}\right. \\&\quad +\left. a^{2}\left( \alpha \right) \lambda \left[ 2\mu \left( \sigma _{2}\!+\!\sigma _{3}\right) ^{2}\!+\!\lambda \left( \!-2\sigma _{1}\!+\!\sigma _{2}\!+\!\sigma _{3}\right) ^{2}\right] \right\} \\&\le -\frac{w_{1}w'\left( \alpha \right) }{a'\left( \alpha \right) } \end{aligned}$$
  • else if \(2\left( \lambda +\mu \right) \sigma _{1}-\lambda \left( \sigma _{2}+\sigma _{3}\right) \ge 0\) and \(\sigma _{1}+a\left( \alpha \right) \left( \sigma _{2}+\sigma _{3}\right) \le 0\)

    $$\begin{aligned}&\frac{1}{4\mu \left[ \left( 1+2a\left( \alpha \right) \right) \lambda +2a\left( \alpha \right) \mu \right] ^{2}}\\&\quad \cdot \left[ 2\left( \lambda +\mu \right) \sigma _{1}-\lambda \left( \sigma _{2}+\sigma _{3}\right) \right] ^{2}\le -\frac{w_{1}w'\left( \alpha \right) }{a'\left( \alpha \right) } \end{aligned}$$

Tensile, compressive and shear strengths according to all models considered in this paper, including the newly proposed generalized one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Lorenzis, L., Maurini, C. Nucleation under multi-axial loading in variational phase-field models of brittle fracture. Int J Fract 237, 61–81 (2022). https://doi.org/10.1007/s10704-021-00555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00555-6

Keywords

Navigation