Skip to main content

Advertisement

Log in

Assessment of the Dynamic Phosphate Model PHOSMOD using Data from Field Trials with Starter Fertilizer to Cereals

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Field trials are useful for achieving information about how crops respond to different fertilizer applications. However, the yield is normally only measured at the end of the growing season, and little information about growth and nutrient utilization during the season is obtained. With the aid of models it is possible to simulate plant growth and nutrient uptake from day to day. In the present paper, a mechanistic phosphate (P) model, PHOSMOD, was assessed using measured data from field fertilizer trials, in which spring barley (Hordeum  vulgare L.) was grown with various amounts and placements of fertilizer P under contrasting soil and weather conditions. PHOSMOD is developed by Greenwood et al. (2001a), mainly for vegetable crops and runs interactively at www.qpais.co.uk/phosmod/phos.htm. In the test data plant growth and plant P concentration were recorded at three stages of growth. After some adjustments, the model was able to reproduce the observed responses to band placed P and starter fertilizer in plant dry matter, and to predict differences between soil types in the responses to applied fertilizer. The main adjustments to the model were the inclusion of bulk density in the equation for calculating tortuosity, and modifications to the start and end of the growth curve in order to achieve a shorter period of P uptake. Based on the results from this study, PHOSMOD appears to be a promising tool for predicting effects of different P fertilization strategies, and will in our view be a useful aid for improving the fertilizer planning programs used in Norway today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.H. Abelson (1999) ArticleTitleA potential phosphate crisis Science 283 IssueID5410 2015–2015 Occurrence Handle10.1126/science.283.5410.2015 Occurrence Handle1:CAS:528:DyaK1MXit12isbg%3D

    Article  CAS  Google Scholar 

  • S.A. Barber (1995) Soil Nutrient Bioavailability: A Mechanistic Approach EditionNumber2 John Wiley & Sons New York 414

    Google Scholar 

  • S.A. Barber J.H. Cushman (1981) Nitrogen uptake model for agronomic crops J.K. Iskandar (Eds) Modelling Waste Water Renovation-Land Treatment Wiley-Interscience New York 382–409

    Google Scholar 

  • P.B. Barraclough P.B. Tinker (1981) ArticleTitleThe determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk density J. Soil Sci. 32 225–236 Occurrence Handle1:CAS:528:DyaL3MXltFeqtb4%3D

    CAS  Google Scholar 

  • G.D. Batten (1992) ArticleTitleA review of phosphorus efficiency in wheat Plant Soil 146 163–168 Occurrence Handle10.1007/BF00012009 Occurrence Handle1:CAS:528:DyaK3sXitlaruro%3D

    Article  CAS  Google Scholar 

  • F. Beese R.R. Ploeg Particlevan der (1976) ArticleTitleInfluence of hysteresis on moisture flow in an undisturbed soil monolith Soil Sci. Soc. Am. J. 40 480–484

    Google Scholar 

  • L. Bergström H. Johnsson G. Torstensson (1991) ArticleTitleSimulation of soil nitrogen dynamics using the SOILN model Fert. Res. 27 181–188 Occurrence Handle10.1007/BF01051126

    Article  Google Scholar 

  • M.R. Carter (2004) ArticleTitleResearching structural complexity in agricultural soils Soil Tillage Res. 79 1–6 Occurrence Handle10.1016/j.still.2004.04.001

    Article  Google Scholar 

  • A. Chassot P. Stamp W. Richner (2001) ArticleTitleRoot distribution and morphology of maize seedlings as affected by tillage and fertilizer placement Plant Soil 231 123–135 Occurrence Handle10.1023/A:1010335229111 Occurrence Handle1:CAS:528:DC%2BD3MXjvVSjtb8%3D

    Article  CAS  Google Scholar 

  • M.C. Drew (1975) ArticleTitleComparison of the effects of a localized supply of phosphatenitrateammonium and potassium on the growth of the seminal root systemand the shootin barley New Phytol. 75 479–490 Occurrence Handle1:CAS:528:DyaE28XlslOkug%3D%3D

    CAS  Google Scholar 

  • M.C. Drew L.R. Saker (1978) ArticleTitleNutrient supply and the growth of the seminal root system in barley J. Exp. Bot. 29 IssueID109 435–451 Occurrence Handle1:CAS:528:DyaE1cXkslCqs7Y%3D

    CAS  Google Scholar 

  • W.G. Duncan A.J. Ohlrogge (1958) ArticleTitlePrinciples of nutrient uptake from fertilizer bands II. Root development in the band Agron. J. 50 605–608 Occurrence Handle1:CAS:528:DyaG1MXjtVyisg%3D%3D

    CAS  Google Scholar 

  • C.G. Enfield T. Phan D.M. Walters R.J. Ellis (1981) ArticleTitleKinetic model for phosphate transport and transformation in calcareous soils: I. Kinetics of transformation Soil Sci. Soc. Am. J. 45 1059–1064 Occurrence Handle1:CAS:528:DyaL38Xhs1OqurY%3D

    CAS  Google Scholar 

  • B. Forde H. Lorenzo (2001) ArticleTitleThe nutritional control of root development Plant Soil 232 51–68 Occurrence Handle10.1023/A:1010329902165 Occurrence Handle1:CAS:528:DC%2BD3MXlsVCks7o%3D

    Article  CAS  Google Scholar 

  • C.A. Grant D.J. Flaten D.J. Tomasiewicz S.C. Sheppard (2001) ArticleTitleThe importance of early season phosphorus nutrition Can. J. Plant Sci. 81 211–224 Occurrence Handle1:CAS:528:DC%2BD3MXltFWqurg%3D

    CAS  Google Scholar 

  • R.F. Grant J.A. Robertson (1997) ArticleTitlePhosphorus uptake by root systems: mathematical modelling in ecosys Plant Soil 188 279–297 Occurrence Handle10.1023/A:1004280303150 Occurrence Handle1:CAS:528:DyaK2sXktVSns7w%3D

    Article  CAS  Google Scholar 

  • D.J. Greenwood T.V. Karpinets D.A. Stone (2001a) ArticleTitleDynamic model for the effects of soil P and fertilizer P on crop growthP uptake and soil P in arable cropping: Model description Ann. Bot. 88 279–291 Occurrence Handle1:CAS:528:DC%2BD3MXlt1ClsLw%3D

    CAS  Google Scholar 

  • D.J. Greenwood D.A. Stone T.V. Karpinets (2001b) ArticleTitleDynamic model for the effects of soil P and fertilizer P on crop growthP uptake and soil P in arable cropping: Experimental test of the model for field vegetables Ann. Bot. 88 293–306 Occurrence Handle1:CAS:528:DC%2BD3MXlt1ClsL0%3D

    CAS  Google Scholar 

  • P. Groenendijk J.G. Kroes (1997) Modelling the Nitrogen and Phosphorus Leaching to Groundwater and Surface Water DLO Winand Staring Centre for Integrated Land, Soil and Water Research Wageningen, The Netherlands 21

    Google Scholar 

  • G. Guttormsen (1998) ArticleTitleComparison of three Norwegian fertilizer planning programs (In Norwegian) Planteforsk Grønn forskning 11 1–11

    Google Scholar 

  • S. Hansen H.E. Jensen N.E. Nielsen H. Svendsen (1991) ArticleTitleSimulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY Fert. Res. 27 245–259 Occurrence Handle10.1007/BF01051131 Occurrence Handle1:CAS:528:DyaK3MXktVOmtr4%3D

    Article  CAS  Google Scholar 

  • P. Hinsinger (2001) ArticleTitleBioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review Plant Soil 237 173–195 Occurrence Handle10.1023/A:1013351617532 Occurrence Handle1:CAS:528:DC%2BD38XovVWlsQ%3D%3D

    Article  CAS  Google Scholar 

  • B. Hoel A.Ø. Kristoffersen M. Bakkegard H. Tandsæther (2005) ArticleTitleLong-term fertilization field trials with phosphorus and potassium to spring cereals (In Norwegian) Grønn kunnskap 9 IssueID1 116–128

    Google Scholar 

  • W.J. Horst M. Kamh J.M. Jibrin V.O. Chude (2001) ArticleTitleAgronomic measures for increasing P availability to crops Plant Soil 237 211–223 Occurrence Handle10.1023/A:1013353610570 Occurrence Handle1:CAS:528:DC%2BD38XovVWltw%3D%3D

    Article  CAS  Google Scholar 

  • S. Itoh (2002) ArticleTitleApplication of mechanistic model for phosphorus uptake by barley under low temperature conditions Soil Sci. Plant Nutr. 48 IssueID3 441–445 Occurrence Handle1:CAS:528:DC%2BD38XltFOrt7k%3D

    CAS  Google Scholar 

  • A. Jungk N. Claassen (1997) ArticleTitleIon diffusion in the soil-root system Adv. Agron. 61 53–110 Occurrence Handle1:CAS:528:DyaK2sXlvFaksLs%3D

    CAS  Google Scholar 

  • H. Kohnke (1968) Soil Physics Tata McGraw-Hill Bombay 224

    Google Scholar 

  • A. Korsaeth T.M. Henriksen L.R. Bakken (2002) ArticleTitleTemporal changes in mineralization and immobilization of N during degradation of plant material: implications for the plant N supply and nitrogen losses Soil Biol. Biochem. 34 789–799 Occurrence Handle10.1016/S0038-0717(02)00008-1 Occurrence Handle1:CAS:528:DC%2BD38XjvVars74%3D

    Article  CAS  Google Scholar 

  • A.Ø. Kristoffersen H. Riley (2005) ArticleTitleEffects of soil compaction and moisture regime on the root and shoot growth and phosphorus uptake of barley plants growing on soils with varying phosphorus status Nutr. Cycl. Agroecosyst. 72 135–146 Occurrence Handle10.1007/s10705-005-0240-8

    Article  Google Scholar 

  • A.Ø. Kristoffersen M. Bakkegard B.O. Hoel (2005) ArticleTitleStarter fertilizer to spring barley and spring wheat in southeast Norway: Effects on growth and nutrient uptake Acta Agric. Scand. Sect. B Soil Plant Sci. 55 252–263 Occurrence Handle1:CAS:528:DC%2BD2MXht1ynsbrL

    CAS  Google Scholar 

  • T. Krogstad Ø. Løvstad (1991) ArticleTitleAvailable soil phosphorus for planktonic blue-green algae in eutropic lake water samples Arch. Hydrobiol. 122 117–128

    Google Scholar 

  • M. Kutilek D.R. Nielsen (1994) Soil Hydrology. Geo Ecology Textbook Catena Verlag Cremligen-Destedt 370

    Google Scholar 

  • I. Levin F.C. Rooyen Particlevan (1977) ArticleTitleSoil water flow and distribution in horizontal and vertical directions as influenced by intermittent water application Soil Sci. 124 IssueID6 355–365

    Google Scholar 

  • A. Liptay A.E. Arevalo (2000) ArticleTitlePlant mineral accumulation, use and transport during the life cycle of plants: a review Can. J. Plant Sci. 80 29–38 Occurrence Handle1:CAS:528:DC%2BD3cXitFyhsbg%3D

    CAS  Google Scholar 

  • M. Lægreid O.C. Bøckman O. Kaarstad (1999) Agriculturefertilizers, and the environment CABI Publishing Oslo, Norway 294

    Google Scholar 

  • H. Marschner (1995) Mineral Nutrition of Higher Plants Academic Press London 889

    Google Scholar 

  • G.L. Mullins (1993) ArticleTitleCotton root growth as affected by P fertilizer placement Fert. Res. 34 23–26 Occurrence Handle10.1007/BF00749956 Occurrence Handle1:CAS:528:DyaK3sXmsVyqur8%3D

    Article  CAS  Google Scholar 

  • J. Murphy J.P. Riley (1962) ArticleTitleA modified single solution method for the determination of phosphate in natural waters Anal. Chim. Acta 26 31–36

    Google Scholar 

  • S.R. Olsen C.V. Cole F.S. Watanabe L.A. Dean (1954) Estimation of Available Phosphorus in Soil by Extraction with NaHCO3 US Department of Agriculture Circular No. 939 Washington DC, USA 19

    Google Scholar 

  • M. Oussible R.K. Crookston W.E. Larson (1992) ArticleTitleSubsurface compaction reduces the root and shoot growth and grain yield of wheat Agron. J. 84 34–38

    Google Scholar 

  • J.A. Parham S.P. Deng W.R. Raun G.V. Johnson (2002) ArticleTitleLong-term cattle manure application in soil I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities Biol. Fertil. Soils 35 328–337 Occurrence Handle1:CAS:528:DC%2BD38Xks1SrtLo%3D

    CAS  Google Scholar 

  • S. Pettersson (1995) ArticleTitleLow root zone temperature effects on net mineral nutrient uptake and distribution in barley (Hordeum vulgare) J. Plant Physiol. 145 459–464 Occurrence Handle1:CAS:528:DyaK2MXks12gtrY%3D

    CAS  Google Scholar 

  • P.E. Rijtema J.G. Kroes (1991) ArticleTitleSome results of nitrogen simulations with the model ANIMO Fert. Res. 27 189–198 Occurrence Handle10.1007/BF01051127 Occurrence Handle1:CAS:528:DyaK3MXktVOmsbc%3D

    Article  CAS  Google Scholar 

  • H. Riley (1983a) ArticleTitleSoil physical properties of clay and silt soils. Effects of organic matter content and soil conditioners Forsk. Fors. Landbr. 34 155–165

    Google Scholar 

  • H. Riley (1983b) ArticleTitleReduced cultivations and straw disposal systems with spring cereals on various soil types II. Soil physical conditions Forsk. Fors. Landbr. 34 221–228

    Google Scholar 

  • H. Riley (1989) ArticleTitleIrrigation of cereals, potatocarrot and onion at various levels of moisture deficit Nor. J. Agri. Sci. 3 117

    Google Scholar 

  • Riley H. 1995. Vanningsbehov til korn og poteter. In: Abrahamsen U.(ed.),Jord-og plantekultur 1995. Forsøksresultater 1994. Apelsvoll, pp. 14–16.

  • H. Riley (1996) ArticleTitleEstimation of physical properties of cultivated soils in southeast Norway from readily available soil information Nor. J. Agri. Sci. 25 1–51

    Google Scholar 

  • H. Riley K. Steenberg (1985) ArticleTitleP-fertilization of cereals on levelled clay sub-soils. Fertilizer trials and soil analyses Forsk. Fors. Landbr. 36 177–183

    Google Scholar 

  • O.F. Schoumans P. Groenendijk (2000) ArticleTitleModelling soil phosphorus levels and phosphorus leaching form agricultural land in the Netherlands J. Environ. Qual. 29 111–116 Occurrence Handle1:CAS:528:DC%2BD3cXot1aqsA%3D%3D

    CAS  Google Scholar 

  • P. Smith J.U. Smith D.S., Powlson W.B. McGill J.R.M. Arah O.G. Chertov K. Coleman U. Franko S. Frolking D.S. Jenkinson L.S. Jensen R.H. Kelly H. Klein-Gunnewiek A.S. Komarov C. Li J.A.E. Molina T. Mueller W.J. Parton J.H.M. Thornley A.P. Whitmore (1997) ArticleTitleA comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments Geoderma 81 153–225

    Google Scholar 

  • S. Zee ParticleVan der W.H. Riemsdijk ParticleVan (1986) ArticleTitleTransport of phosphate in a heterogeneous field Transport Porous Media 1 339–359 Occurrence Handle10.1007/BF00208042

    Article  Google Scholar 

  • S. Zee ParticleVan der F. Leus M. Louver (1989) ArticleTitlePrediction of phosphate transport in small columns with an approximate sorption kinetics model Water Resour. Res. 25 1353–1365

    Google Scholar 

  • M. Noordwijk Particlevan P. Willigen Particlede P.A.I. Ehlert W.J. Chardon (1990) ArticleTitleA simple model of P uptake by crops as a possible basis for P fertilizer recommendations Neth. J. Agric. Sci. 38 317–332

    Google Scholar 

  • A. Vold J.S. Søreng (1997) ArticleTitleOptimization of dynamic plant nitrogen uptakeusing apriori information of plant nitrogen content Biomet. J. 39 IssueID6 707–718

    Google Scholar 

  • A.P. Whitmore (1991) ArticleTitleA method for assessing the goodness of computer simulation of soil processes Soil Sci. 42 289–299

    Google Scholar 

  • J.C. Zadoks T.T. Chang C.F. Konzak (1974) ArticleTitleA decimal code for the growth stages of cereals Weed Res. (Oxf.) 14 415–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annbjørg Øverli Kristoffersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristoffersen, A.Ø., Greenwood, D.J., Sogn, T.A. et al. Assessment of the Dynamic Phosphate Model PHOSMOD using Data from Field Trials with Starter Fertilizer to Cereals. Nutr Cycl Agroecosyst 74, 75–89 (2006). https://doi.org/10.1007/s10705-006-6256-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-6256-x

Keywords

Navigation