Skip to main content

Advertisement

Log in

Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems?

  • Review Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

We compiled quantitative estimates on symbiotic N2 fixation by trees in agroforestry systems (AFS) in order to evaluate the critical environmental and management factors that affect the benefit from N2 fixation to system N economy. The so-called “N2-fixing tree” is a tripartite symbiotic system composed of the plant, N2-fixing bacteria, and mycorrhizae-forming fungi. Almost 100 recognised rhizobial species associated with legumes do not form an evolutionary homologous clade and are functionally diverse. The global bacterial diversity is still unknown. Actinorrhizal symbioses in AFS remain almost unstudied. Dinitrogen fixation in AFS should be quantified using N isotopic methods or long-term system N balances. The general average ± standard deviation of tree dependency on N2 fixation (%Ndfa) in 38 cases using N isotopic analyses was 59 ± 16.6 %. Under humid and sub-humid conditions, the percentage was higher in young (69 ± 10.7 %) and periodically pruned trees (63 ± 11.8 %) than in free-growing trees (54 ± 11.7 %). High variability was observed in drylands (range 10–84 %) indicating need for careful species and provenance selection in these areas. Annual N2 fixation was the highest in improved fallow and protein bank systems, 300–650 kg [N] ha−1. General average for 16 very variable AFS was 246 kg [N] ha−1, which is enough for fulfilling crop N needs for sustained or increasing yield in low-input agriculture and reducing N-fertiliser use in large-scale agribusiness. Leaf litter and green mulch applications release N slowly to the soil and mostly benefit the crop through long-term soil improvement. Root and nodule turnover and N rhizodeposition from N2-fixing trees are sources of easily available N for the crop yet they have been largely ignored in agroforestry research. There is also increasing evidence on direct N transfer from N2-fixing trees to crops, e.g. via common mycelial networks of mycorrhizal fungi or absorption of tree root exudates by the crop. Research on the below-ground tree-crop-microbia interactions is needed for fully understanding and managing N2 fixation in AFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In fact, no tree fixes atmospheric N2 because all organisms capable of N2 fixation are Bacteria or Archae. However, in order to avoid repeating the long correct expression “trees forming N2-fixing symbiosis with bacteria” we use the common though inaccurate term “N2-fixing trees” for referring to these trees as a group.

References

  • Acosta-Durán C, Martínez-Romero E (2002) Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch Microbiol 178:161–164

    Article  PubMed  CAS  Google Scholar 

  • Akimov V, Dobritsa S (1992) Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379

    Article  CAS  Google Scholar 

  • Akinnifesi FK, Chirwa PW, Ajayi OC, Sileshi G, Matakala P, Kwesiga FR, Harawa H, Makumba W (2008) Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agric J 3:58–75

    Google Scholar 

  • Akinnifesi FK, Ajayi OC, Sileshi G, Chirwa PW, Chianu J (2010) Fertiliser trees for sustainable food security in the maize-based production systems of East and Southern Africa. A review. Agron Sustain Dev 30:615–629

    Article  Google Scholar 

  • Allison SD, Nielsen C, Hughes RF (2006) Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana. Soil Biol Biochem 38:1537–1544

    Article  CAS  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  PubMed  CAS  Google Scholar 

  • Amtmann A, Blatt MR (2009) Tansley review. Regulation of macronutrient transport. New Phytol 181:35–52

    Article  PubMed  CAS  Google Scholar 

  • An C, Riggsby W, Mullin B (1985) Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int J Syst Bacteriol 35:140–146

    Article  CAS  Google Scholar 

  • André S, Galiana A, Le Roux C, Prin Y, Neyra M, Duponnois R (2005) Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth. Mycorrhiza 15:357–364

    Article  PubMed  Google Scholar 

  • Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis FB (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Diversity 4:131–140

    Article  Google Scholar 

  • Araújo AFS, Burity HA, Lyra M do CCP (2001) Influência de diferentes níveis de nitrogênio e fósforo em leucena inoculada com Rhizobium e fungo micorrízico arbuscular. Ecossistema 26:35–38

    Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn, seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 124:231–242

    Article  Google Scholar 

  • Aronson J, Ovalle C, Avendaño J, Longeri L, del Pozo A (2002) Agroforestry tree selection in central Chile: biological nitrogen fixation and early plant growth in six dryland species. Agrofor Syst 56:155–166

    Article  Google Scholar 

  • Augusto L, Crampon N, Saur E, Bakker MR, Pellerin S, de Lavaissiere C, Trichet P (2005) High rates of nitrogen fixation of Ulex species in the understory of maritime pine stands and the potential effect of phosphorus fertilization. Can J For Res 35:1183–1192

    Article  CAS  Google Scholar 

  • Babbar LI, Zak DR (1994) Nitrogen cycling in coffee agroecosystems: net nitrogen mineralization and nitrification in the presence and absence of shade trees. Agric Ecosys Environ 48:107–113

    Article  CAS  Google Scholar 

  • Babbar LI, Zak DR (1995) Nitrogen loss from coffee agroecosystems in Costa Rica. Leaching and denitrification in the presence and absence of shade trees. J Environ Qual 24:227–233

    Article  CAS  Google Scholar 

  • Bala A, Giller KE (2001) Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytol 149:495–507

    Article  Google Scholar 

  • Bala A, Giller KE (2006) Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr Cycling Agroecosys 76:319–330

    Article  Google Scholar 

  • Bala A, Murphy P, Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12:917–930

    Article  PubMed  CAS  Google Scholar 

  • Balachandar D, Raja P, Kumar K, Sundaram SP (2007) Non-rhizobial nodulation in legumes. Biotech Mol Biol Rev 2:49–57

    Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. In: Norris JR, Read DJ, Varma AK (eds) Techniques in the study of mycorrhiza. Methods in Microbiology, vol 24. Academic Press, London, pp 391–416

    Google Scholar 

  • Barnet YM (1991) Ecology of legume root-nodule bacteria. In: Dilworth MJ, Glenn A (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, pp 199–228

    Google Scholar 

  • Barrios E, Kwesiga F, Buresh RJ, Sprent JI (1997) Light fraction soil organic matter and available nitrogen following trees and maize. Soil Sci Soc Am J 61:826–831

    Article  CAS  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Berliner R, Torrey J (1989) On tripartite Frankia-mycorrhizal associations in the Myricaceae. Can J Bot 67:1708–1712

    Article  Google Scholar 

  • Bernhard-Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4:161–172

    Article  Google Scholar 

  • Berninger F, Salas E (2003) Biomass dynamics of Erythrina lanceolata as influenced by shoot-pruning intensity in Costa Rica. Agrofor Syst 57:19–28

    Article  Google Scholar 

  • Bertsch F (2003) Absorción de nutrimentos por los cultivos. ACCS, San José

    Google Scholar 

  • Bethlenfalvay GJ (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing legumes: problems and prospects. In: Norris JR, Read DJ, Varma AK (eds) Techniques in the study of mycorrhiza. Methods in microbiology vol 24. Academic Press, London, pp 375–388

    Chapter  Google Scholar 

  • Bethlenfalvay GJ, Newton WE (1991) Agro-ecological aspects of the mycorrhizal, nitrogen-fixing legume symbiosis. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Beltsville symposia in agricultural research 14. Kluwer, Dordrecht, pp 349–354

    Google Scholar 

  • Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, Ferrera-Cerrato R (1991) Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plantarum 82:423–432

    Article  CAS  Google Scholar 

  • Binkley D, Senock R, Cromack K Jr (2003) Phosphorus limitation on nitrogen fixation by Falcataria seedlings. For Ecol Manag 186:171–176

    Article  Google Scholar 

  • Blair G, Catchpoole D, Horne P (1990) Forage tree legumes: their management and contribution to the nitrogen economy of wet and humid tropical environments. Adv Agron 44:27–54

    Article  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycling Agroecosys 57:235–270

    Article  Google Scholar 

  • Boivin C, Giraud E (1999) Molecular symbiotic characterization of rhizobia: towards a polyphasic approach using Nod factors and nod genes. In: Martínez-Romero E, Hernández G (eds) Highlights of nitrogen fixation research. Kluwer/Plenum Publishers, New York, pp 295–299

    Chapter  Google Scholar 

  • Bouillet JP, Laclau JP, Gonçalves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil 2: Nitrogen accumulation in the stands and biological N2 fixation. For Ecol Manag 255:3918–3930

    Article  Google Scholar 

  • Bryan JA (2000) Nitrogen fixation of leguminous trees in traditional and modern agroforestry systems. In: Ashton MS, Montagnini F (eds) The silvicultural basis for agroforestry systems. CRC Press, Boca Raton, pp 161–182

    Google Scholar 

  • Burleigh SH, Dawson JO (1994) Occurence of Myrica-nodulating Frankia in Hawaian volcanic soils. Plant Soil 164:283–289

    Article  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Casida LE Jr (1982) Ensifer adhaerens, gen. nov., sp. nov. a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345

    Article  Google Scholar 

  • Castenholz RW (2001) Cyanobacteria, oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol I, 2nd edn. Springer, Berlin, pp 473–599

    Chapter  Google Scholar 

  • Cavard X, Augusto L, Saur E, Trichet P (2007) Field effect of P fertilization on N2 fixation rate of Ulex europaeus. Ann For Sci 64:875–881

    Article  CAS  Google Scholar 

  • Chalk PM, Ladha JK (1999) Estimation of legume symbiotic dependence: an evaluation of techniques based on 15N dilution. Soil Biol Biochem 31:1901–1917

    Article  CAS  Google Scholar 

  • Chatarpaul L, Chakravarty P, Subramaniam P (1989) Studies in tetrapartite symbioses. I. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil 118:145–150

    Article  Google Scholar 

  • Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873

    Article  PubMed  CAS  Google Scholar 

  • Chesney P, Nygren P (2002) Fine root and nodule dynamics of periodically pruned hedgerow trees in an alley cropping system in Costa Rica. Agrofor Syst 56:259–269

    Article  Google Scholar 

  • Chikowo R, Mapfumo P, Nyamugafata P, Giller KE (2004) Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe. Plant Soil 262:303–315

    Article  CAS  Google Scholar 

  • Chintu R, Zaharah AR (2003) Nitrogen uptake of maize (Zea mays. L) from isotope-labeled biomass of Paraserianthes falcataria grown under controlled conditions. Agrofor Syst 57:101–107

    Article  Google Scholar 

  • Colonna JP, Thoen D, Ducoussu M, Badji S (1991) Comparative effects of Glomus mosseae and P fertilizer on foliar mineral composition of Acacia seneyal seedlings inoculated with Rhizobium. Mycorrhiza 1:35–38

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  PubMed  CAS  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  PubMed  CAS  Google Scholar 

  • DaMatta FM, Ronchi CP, Maestri M, Barros RS (2007) Ecophysiology of coffee growth and production. Braz J Plant Physiol 19:485–510

    Article  CAS  Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen fixing actinorhizal symbioses. Springer, The Netherlands, pp 199–227

    Chapter  Google Scholar 

  • de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733

    Article  Google Scholar 

  • de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382

    Article  PubMed  Google Scholar 

  • Diagne O, Ingleby K, Deans JD, Lindley DK, Diaité I, Neyra M (2001) Mycorrhizal inoculum potential of soils from alley cropping plots in Sénégal. For Ecol Manag 146:35–43

    Article  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential use and management of Casuarinaceae in the tropics and subtropic. In: Swintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, New York, pp 365–385

    Google Scholar 

  • Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to senegalese soils in relation to salinity and pH of the samplings sites. Microbial Ecol 54:553–566

    Article  CAS  Google Scholar 

  • Diouf A, Diop TA, Ndoye I, Gueye M (2008) Response of Gliricidia sepium tree to phosphorus application and inoculations with Glomus aggregatum and rhizobial strains in a sub-Saharian sandy soil. Afr J Biotechnol 7:766–771

    Google Scholar 

  • Domenach AM (1995) Approche de l’estimation de la fixation symbiotique des arbres par l’utilisation des abondances isotopiques naturelles de l’azote. In: Maillard P, Bonhomme R (eds) Utilisation des isotopes stables pour l’etude du fonctionnement des plantes, Paris 16–17 décembre 1993. Les Colloques 70, INRA Editions, Versailles, France, pp 159–172

  • Domenach AM, Kurdali F, Bardin R (1989) Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance. Plant Soil 118:51–59

    Article  CAS  Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98

    Article  CAS  Google Scholar 

  • Duhoux E, Dommergues YR (1985) The use of nitrogen fixing trees in forest and soil restoration in the tropics. In: Ssali H, Keya SO (eds) Biological nitrogen fixation in Africa: proceedings of the first conference of the African association for biological nitrogen fixation. Matianum Press Consultants, Nairobi, pp 384–400

    Google Scholar 

  • Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59:121–129

    Article  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  PubMed  CAS  Google Scholar 

  • Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473

    Article  PubMed  CAS  Google Scholar 

  • Escalante G, Herrera R, Aranguren J (1984) Fijación de nitrógeno en árboles de sombra (Erythrina poeppigiana) en cacaotales del norte de Venezuela. Pesq. Agropec. Bras. 19(edição especial):223–230

    Google Scholar 

  • FAOStat (2011) http://www.fao.org/corp/statistics/en/ Accessed on 29 July 2011

  • Fassbender HW (1987) Nutrient cycling in agroforestry systems of coffee (Coffea arabica) with shade trees in the Central Experiment of CATIE. In: Beer JW, Fassbender HW, Heuveldop J (eds) Advances in agroforestry research. CATIE, Turrialba, pp 155–172

    Google Scholar 

  • Fassbender HW, Alpízar L, Heuveldop J, Fölster H, Enríquez G (1988) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) and poro (Erythrina poeppigiana) in Costa Rica III. Cycles of organic matter and nutrients. Agrofor Syst 6:49–62

    Google Scholar 

  • Fernández M, Meugnier H, Grimont P, Bardin R (1989) Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429

    Article  Google Scholar 

  • Fuentes-Ramírez LE, Bustillos-Cristales R, Tapia-Hernández A, Jiménez Salgado T, Wang ET, Martínez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. J Syst Evol Microbiol 51:1305–1314

    Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes—a review. Agron Sustain Dev 30:57–66

    Article  CAS  Google Scholar 

  • Galiana A, Chaumont J, Diem HG, Dommergues Y (1990) Nitrogen-fixing potential of Acacia mangium and Acacia auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biol Fertil Soils 9:261–267

    Article  Google Scholar 

  • Galiana A, Gnahoua GM, Chaumont J, Lesueur D, Prin Y, Mallet B (1998) Improvement of nitrogen fixation in Acacia mangium through inoculation with rhizobium. Agrofor Syst 40:297–307

    Article  Google Scholar 

  • Gardner IC, Barrueco CR (1999) Mycorrhizal and actinorhizal biotechnology: problems and prospects. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 469–499

    Google Scholar 

  • Garrity DP, Mercado AR Jr (1994) Nitrogen fixation capacity in the component species of contour hedgerows: how important? Agrofor Syst 27:241–258

    Article  Google Scholar 

  • Garrity DP, Akinnefesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec 2:197–214

    Article  Google Scholar 

  • Gauthier D, Diem HG, Dommergues YR (1985) Assessment of N2 fixation by Casuarina equisetifolia inoculated with Frankia OR02001 using 15N methods. Soil Biol Biochem 17:375–379

    Article  CAS  Google Scholar 

  • Gehring C, Vlek PLG (2004) Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580

    Article  CAS  Google Scholar 

  • Giardina CP, Huffman S, Binkley D, Caldwell BA (1995) Alders increase soil phosphorus availability in a Douglas-fir plantation. Can J For Res 25:1652–1657

    Article  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:255–277

    Article  CAS  Google Scholar 

  • Gokkaya K, Hurd TM, Raynal DJ (2006) Symbiont nitrogenase, alder growth, and soil nitrate response to phosphorus addition in alder (Alnus incana ssp. rugosa) wetlands of the Adirondack Mountains, New York State, USA. Environ Exp Bot 55:97–109

    Article  CAS  Google Scholar 

  • Gómez Luciano CA (2008) Distribución de raíces finas de Inga edulis y Theobroma cacao en el suelo de un sistema agroforestal orgánico. Proyecto de Graduación, Universidad EARTH, Guácimo

    Google Scholar 

  • Graham P (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Graham PH, Hubbell DH (1975) Legume Rhizobium relationships in tropical agriculture. In: Doll EC, Mott GO (eds) Tropical forages in livestock production systems. ASA Spec Publ 24:9–21

  • Grierson PF, Smithson P, Nziguheba G, Radersma S, Comerford NB (2004) Phosphorus dynsmics and mobilization by plants. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 127–142

    Chapter  Google Scholar 

  • Grossman JM, Sheaffer C, Wyse D, Bucciarelli B, Vance C, Graham PH (2006) An assessment of nodulation and nitrogen fixation in inoculated Inga oerstediana, a nitrogen-fixing tree shading organically grown coffee in Chiapas, Mexico. Soil Biol Biochem 38:769–784

    Article  CAS  Google Scholar 

  • Gueye M, Ndoye I, Dianda M, Danso SKA, Dreyfus B (1997) Active N2 fixation in several Faidherbia albida provenances. Arid Soil Res Rehabil 11:63–70

    Article  Google Scholar 

  • Habte M (1995) Dependency of Cassia siamea on vesicular arbuscular mycorrhizal fungi. J Plant Nutr 18:2191–2198

    Article  CAS  Google Scholar 

  • Habte M, Turk D (1991) Response of two species of Cassia and Gliricidia sepium to vesicular-arbuscular mycorrhizal infection. Commun Soil Sci Plant Anal 22:1861–1872

    Article  Google Scholar 

  • Haggar JP, Tanner EVJ, Beer JW, Kass DCL (1993) Nitrogen dynamics in tropical agroforestry and annual cropping systems. Soil Biol Biochem 25:1363–1378

    Article  CAS  Google Scholar 

  • Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699

    Article  PubMed  CAS  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985

    Article  CAS  Google Scholar 

  • Harmand J-M (1998) Rôle des espèces ligneuses à croissance rapide dans le fonctionnement biogéochimique de la jachère. Effets sur la restauration de la fertilité des sols ferrugineux tropicaux. (Bassin de la Bénoué au Nord-Cameroun). Thèse de doctorat, Université de Paris VI, France, 213 p

  • Harmand J-M, Njiti CF, Bernhard-Reversat F, Puig H (2004) Aboveground and belowground biomass, productivity and nutrient accumulation in tree improved fallows in the dry tropics of Cameroon. For Ecol Manag 188:249–265

    Article  Google Scholar 

  • Harmand J-M, Avila H, Dambrine E, Skiba U, de Miguel S, Renderos RV, Oliver R, Jiménez F, Beer J (2007a) Nitrogen dynamics and soil nitrate retention in a Coffea arabica-Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85:125–139

    Article  CAS  Google Scholar 

  • Harmand J-M, Chaves V, Cannavo P, Ávila H, Dionisio L, Zeller B, Hergoualc’h K, Vaast P, Oliver R, Beer J, Dambrine E (2007b) Nitrogen dynamics (coffee productivity, nitrate leaching and N2O emissions) in Coffea arabica systems in Costa Rica according to edaphic conditions, fertilization and shade management. In: 2nd International Symposium on Multi-Strata Agroforestry Systems with Perennial Crops, CATIE, Turrialba, Costa Rica, 17–21 September 2007

  • Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. For Ecol Manag 81:1–17

    Article  Google Scholar 

  • He X-H, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants via common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • He X-H, Critchley C, Hock N, Bledsoe C (2004) Reciprocal N (15NH4 + or 15NO3 ) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol 163:629–640

    Article  Google Scholar 

  • Hergoualc’h K, Skiba U, Harmand J-M, Oliver R (2007) Processes responsible for the nitrous oxide emission from a Costa Rican Andosol under a coffee agroforestry plantation. Biol Fert Soils 43:787–795

    Article  CAS  Google Scholar 

  • Hergoualc’h K, Skiba U, Harmand J-M, Hénault C (2008) Fluxes of greenhouse gases from andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry 89:329–345

    Article  Google Scholar 

  • Hernández M, Benavides JE (1994) Podas estratégicas en cercos vivos de Piñon cubano (Gliricidia sepium) para producción de forraje en la época seca. In: Benavides JE (ed) Arboles y arbustos forrajeros en América Central, vol II., CATIETurrialba, Costa Rica, pp 559–582

    Google Scholar 

  • Hernández-Lucas I, Segovia L, Martínez-Romero E, Pueppke SG (1995) Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl Environ Microbiol 61:2775–2779

    PubMed  Google Scholar 

  • Herrera AM, Bedmar EJ, Olivares J (1985) Host specificity of Rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis. Plant Sci 42:177–182

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hobbie EA, Högberg P (2012) Tansley review. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  PubMed  CAS  Google Scholar 

  • Högberg P (1997) Tansley Review No. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    Article  PubMed  CAS  Google Scholar 

  • Huguet V, Gouy M, Normand P, Zimpfer JF, Fernandez MP (2005) Molecular phylogeny of Myricaceae: a reexamination of host-symbiont specificity. Mol Phyl Evol 34:557–568

    Article  CAS  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511

    Article  CAS  Google Scholar 

  • Iglesias L, Salas E, Leblanc HA, Nygren P (2011) Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of arbuscular mycorrhizal fungi. Agrofor Syst 83:63–73

    Article  Google Scholar 

  • Ingleby K, Fahmer A, Wilson J, Newton AC, Mason PA, Smith RI (2001) Interactions between mycorrhizal colonisation, nodulation and growth of Calliandra calothyrsus seedlings supplied with different concentrations of phosphorus solution. Symbiosis 30:15–28

    Google Scholar 

  • Ingleby K, Wilson J, Munro RC, Cavers S (2007) Mycorrhizas in agroforestry: spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. Plant Soil 294:125–136

    Article  CAS  Google Scholar 

  • Isaac ME, Harmand J-M, Drevon J–J (2011a) Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions. J Plant Physiol 168:776–781

    Article  PubMed  CAS  Google Scholar 

  • Isaac ME, Harmand J-M, Lesueur D, Lelon J (2011b) Tree age and soil phosphorus conditions influence N2-fixation rates and soil N dynamics in natural populations of Acacia Senegal. For Ecol Manag 261:582–588

    Article  Google Scholar 

  • Isaac ME, Hinsinger P, Harmand J-M (2012) Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions. Sci Total Environ. doi:10.1016/j.scitotenv.2011.12.071

    PubMed  Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009a) Root exudates of a legume tree as a nitrogen source for a tropical fodder grass. Nutr Cycling Agroecosys 85:203–213

    Article  Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009b) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32:1366–1376

    Article  PubMed  CAS  Google Scholar 

  • Jalonen R, Timonen S, Sierra J, Nygren P (2012) Arbuscular mycorrhizal symbioses in a cut-and-carry forage production system of legume tree Gliricidia sepium and fodder grass Dichanthium aristatum. Agrofor Syst. doi:10.1007/s10457-012-9553-1

    Google Scholar 

  • Jamann S, Fernández MP, Moiroud A (1992) Genetic diversity of Elaeagnaceae-infective Frankia strains isolated from various soils. Acta Oecologica 13:395–405

    Google Scholar 

  • Jiménez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernández A, Mascarua-Esparza MA, Martínez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing Acetobacteria. Appl Environ Microbiol 63:3676–3683

    PubMed  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73–81

    Article  CAS  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423

    Article  CAS  Google Scholar 

  • Kadiata BD, Mulongoy K, Isirimah NO (1997) Influence of pruning frequency of Albizia lebbeck, Gliricidia sepium and Leucaena leucocephala on nodulation and potential nitrogen fixation. Biol Fert Soils 24:255–260

    Article  CAS  Google Scholar 

  • Kähkölä A-K, Nygren P, Leblanc HA, Pennanen T, Pietikäinen J (2012) Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae. Nutr Cycling Agroecosys 92:51–65

    Article  Google Scholar 

  • Kang BT, Wilson GF, Sipkens L (1981) Alley cropping maize (Zea mays L.) and leucaena (Leucaena leucocephala Lam.) in Southern Nigeria. Plant Soil 63:165–179

    Article  Google Scholar 

  • Kanmegne J, Smaling EMA, Brussaard L, Gansop-Kouomegne A, Boukong A (2006) Nutrient flows in smallholder production systems in the humid forest zone of southern Cameroon. Nutr Cycling Agroecosys 76:233–248

    Article  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kass DL (1995) Are nitrogen fixing trees a solution for acid soils? In: Evand DO, Szott LT (eds) Nitrogen fixing trees for acid soils. Nitrogen Fixing Tree Research Reports, Special Issue 1995. Winrock International Institute for Agricultural Development, Morrilton, pp 19–31

    Google Scholar 

  • Kass DCL, Sylvester-Bradley R, Nygren P (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biol Biochem 29:775–785

    Article  CAS  Google Scholar 

  • Khanna PK (1998) Nutrient cycling under mixed-species tree systems in southeast Asia. Agrofor Syst 38:99–120

    Article  Google Scholar 

  • Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666

    Article  Google Scholar 

  • Kurppa M, Leblanc HA, Nygren P (2010) Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15N labelled soil: ecological and experimental considerations. Agrofor Syst 80:223–239

    Article  Google Scholar 

  • Kuyper TW, Cardoso IM, Onguene NA, Murniati, van Noordwijk M (2004) Managing mycorrhiza in tropical multispecies agroecosystems. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 243–261

  • Ladha JK, Peoples MB, Garrity DP, Capuno VT, Dart PJ (1993) Estimating dinitrogen fixation of hedgerow vegetation using the nitrogen-15 natural abundance method. Soil Sci Soc Am J 57:732–737

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Leblanc HA (2004) Evaluation of Inga spp. for dinitrogen fixation and nitrogen release in humid-tropical alley cropping. Ph.D. Thesis, Department of Agronomy, University of Missouri–Columbia, USA

  • Leblanc HA, McGraw RL, Nygren P, Le Roux C (2005) Neotropical legume tree Inga edulis forms N2-fixing symbiosis with fast-growing Bradyrhizobium strains. Plant Soil 275:123–133

    Article  CAS  Google Scholar 

  • Leblanc HA, McGraw RL, Nygren P (2007) Dinitrogen-fixation by three Neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil 291:99–209

    Article  CAS  Google Scholar 

  • Lehmann J, Muraoka T, Zech W (2001) Root activity patterns in an Amazonian agroforest with fruit trees determined by 32P, 33P and 15N applications. Agrofor Syst 52:185–197

    Article  Google Scholar 

  • Lesueur D, Sarr A (2008) Effects of single and dual inoculation with selected microsymbionts (rhizobia and arbuscular mycorrhizal fungi) on field growth and nitrogen fixation of Calliandra calothyrsus Meissn. Agrofor Syst 73:37–45

    Article  Google Scholar 

  • Lie TA, Göktan D, Engin M, Pijenborg J, Anlarsal E (1987) Co-evolution of the legume-Rhizobium association. Plant Soil 100:171–181

    Article  Google Scholar 

  • Lindblad P, Russo R (1986) C2H2-reduction by Erythrina poeppigiana in a Costa Rican coffee plantation. Agrofor Syst 4:33–37

    Article  Google Scholar 

  • Liu J, Wang ET, Chen WX (2005) Diverse rhizobia associated with woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the temperate zone of China. Syst Appl Microbiol 28:465–477

    Article  PubMed  CAS  Google Scholar 

  • Lloret L, Ormeno-Orillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp nov.: a new species nodulating Acacia angustisima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290

    Article  PubMed  CAS  Google Scholar 

  • Lortet G, Mear N, Lorquin J, Dreyfus B, de Lajudie P, Rosenberg C, Boivin C (1996) Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol Plant-Microbe Interact 9:736–747

    Article  Google Scholar 

  • Louche J, Ali MA, Sauvage FX, Cloutier-Hurteau B, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73:323–335

    PubMed  CAS  Google Scholar 

  • Lumini E, Bosco M, Fernandez MP (1996) PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol Ecol 21:303–311

    Article  CAS  Google Scholar 

  • Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97

    Article  Google Scholar 

  • Mafongoya PL, Giller KE, Odee S, Gathumbi S, Ndufa SK, Sitompul SM (2004) Benefiting from N2-fixation and managing rhizobia. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 227–242

    Chapter  Google Scholar 

  • Makatiani ET, Odee DW (2007) Response of Sesbania sesban (L.) Merr. to rhizobial inoculation in an N-deficient soil containing low numbers of effective indigenous rhizobia. Agrofor Syst 70:211–216

    Article  Google Scholar 

  • Manjunath A, Habte M (1992) External and internal P requirement of plant species differing in their mycorrhizal dependency. Arid Soil Res Rehabil 6:271–284

    Article  CAS  Google Scholar 

  • Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685–687

    Article  CAS  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell M, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Martínez L, Caballero-Mellado J, Orozco J, Martínez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 255:35–47

    Article  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  Google Scholar 

  • Maunuksela L, Hahn D, Haahtela K (2000) Effect of freezing of soils on nodulation capacities of total and specific Frankia populations. Symbiosis 29:107–120

    Google Scholar 

  • Maunuksela L, Zepp K, Koivula T, Zeyer J, Haahtela K, Hahn D (2006) Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol Ecol 28:11–21

    Article  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    Article  PubMed  CAS  Google Scholar 

  • McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JI, McKey D (eds) Advances in legume systematics 5: the nitrogen factor. Royal Botanic Gardens, Kew, pp 211–228

    Google Scholar 

  • Mercado AR Jr, van Noordwijk M, Cadisch G (2011) Positive nitrogen balance of Acacia mangium woodlots as fallows in the Philippines based 15N natural abundance data on N2 fixation. Agrofor Syst 81:221–233

    Article  Google Scholar 

  • Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29:881–888

    Article  CAS  Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Müller M (1983) A major error in the acetylene reduction assay: dreceases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649

    Article  CAS  Google Scholar 

  • Minchin FR, Sheehy JE, Witty JF (1986) Further errors in the acetylene reduction assay. Effects of plan disturbance. J Exp Bot 37:1581–1591

    Article  CAS  Google Scholar 

  • Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7:889–895

    Article  PubMed  CAS  Google Scholar 

  • Moreira FMS, Carvalho Y, Gonçalves M, Haukka K, Young JPW, de Faria SM, Franco AA, Cruz LM, Pedrosa FO (2000) Azorhizobium johannense sp. nov. and Sesbania virgata (Caz.) Pers.: a highly specific symbiosis. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Current Plant Sci Biotechnol Agric 38:197

  • Moyer-Henry KA, Burton JW, Israel DW, Rufty TW (2006) Nitrogen transfer between plants: a 15N natural abundance study with crop and weed species. Plant Soil 282:7–20

    Article  CAS  Google Scholar 

  • Nair PKR, Buresh RJ, Mugendi DN, Latt CR (1999) Nutrient cycling in tropical agroforestry systems: myths and science. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural system. CRC Press, Boca Raton, pp 1–31

    Google Scholar 

  • Näsholm T, Kielland K, Ganateg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  CAS  Google Scholar 

  • Nazaret S, Simonet P, Normand P, Bardin R (1989) Genetic diversity among Frankia isolated from Casuarina nodules. Plant Soil 118:241–247

    Article  CAS  Google Scholar 

  • Ndoye I, Gueye M, Danso SKA, Dreyfus B (1995) Nitrogen fixation in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil 172:175–180

    Article  CAS  Google Scholar 

  • Ndufa JK, Gathumbi SM, Kamiri HW, Giller KE, Cadisch G (2009) Do mixed-species legume fallows provide long-term maize yield benefit compared with monoculture legume fallows? Agron J 101:1352–1362

    Article  Google Scholar 

  • Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiumi T, Nuntagij A, Kotepong S, Suzuki A, Higashi S, Abe M (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27

    Article  PubMed  CAS  Google Scholar 

  • Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368

    Article  PubMed  CAS  Google Scholar 

  • Nye PH, Greenland DJ (1960) The soil under shifting cultivation. Commonwealth Bureau of Soils, Harpenden

    Google Scholar 

  • Nygren P (1995) Above-ground nitrogen dynamics following the complete pruning of a nodulated woody legume in humid tropical field conditions. Plant Cell Environ 18:977–988

    Article  Google Scholar 

  • Nygren P, Cruz P (1998) Biomass allocation and nodulation of Gliricidia sepium under two cut-and-carry forage production regimes. Agrofor Syst 41:277–292

    Article  Google Scholar 

  • Nygren P, Leblanc HA (2009) Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees. Agrofor Syst 76:303–315

    Article  Google Scholar 

  • Nygren P, Ramírez C (1995) Production and turnover of N2 fixing nodules in relation to foliage development in periodically pruned Erythrina poeppigiana (Leguminosae) trees. For Ecol Manag 73:59–73

    Article  Google Scholar 

  • Nygren P, Cruz P, Domenach AM, Vaillant V, Sierra J (2000) Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume. Tree Physiol 20:41–48

    Article  PubMed  Google Scholar 

  • Oaks A (1992) A re-evaluation of nitrogen assimilation in roots. Bioscience 42:103–110

    Article  Google Scholar 

  • Odee DW, Sutherland JM, Kimiti JM, Sprent JI (1995) Natural rhizobial populations and nodulation status of woody legumes growing in diverse Kenyan conditions. Plant Soil 173:211–224

    Article  CAS  Google Scholar 

  • Odee DW, Sutherland JM, Makatiani ET, McInroy SG, Sprent JI (1997) Phenotypic characteristics and composition of rhizobia associated with woody legumes growing in diverse Kenyan conditions. Plant Soil 188:65–75

    Article  CAS  Google Scholar 

  • Odee DW, Haukka K, McInroy SG, Sprent JI, Sutherland JM, Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34:801–811

    Article  CAS  Google Scholar 

  • Oliver R, Njiti CF, Harmand J-M (2000) Analyse de la durabilité de la fertilité acquise suite à des jachères arborées au Nord-Cameroun. Etude et Gestion des Sols 7:287–309

    Google Scholar 

  • Ong CK, Kho RM, Radersma S (2004) Ecological interactions in multispecies agroecosystems: concepts and rules. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 1–15

    Chapter  Google Scholar 

  • Oyaizu H, Matsumoto S, Minamisawa K, Gamou T (1993) Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J Gen Appl Microbiol 39:339–354

    Article  CAS  Google Scholar 

  • Palm CA (1995) Contribution of agroforestry trees to nutrient requirements in intercropped plants. Agrofor Syst 30:105–124

    Article  Google Scholar 

  • Parrotta JA, Baker DD, Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res 16:1684–1691

    Article  Google Scholar 

  • Parsons R, Stanforth A, Raven JA, Sprent JI (1993) Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ 16:125–136

    Article  CAS  Google Scholar 

  • Paschke MW, Dawson JO (1992) The occurrence of Frankia in tropical forest soils of Costa Rica. Plant Soil 142:63–67

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Peoples MB, Palmer B, Lilley DM, Duc LM, Herridge DF (1996) Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182:125–137

    Article  CAS  Google Scholar 

  • Pons TL, Perreijn K, van Kessel C, Werger MJA (2007) Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173:154–167

    Article  PubMed  CAS  Google Scholar 

  • Prin Y, Galiana A, Le Roux C, Méléard B, Razafimaharo V, Ducousso M, Chaix G (2003) Molecular tracing of Bradyrhizobium strains helps to correctly interpret Acacia mangium response to inoculation in a reforestation experiment in Madagascar. Biol Fertil Soils 37:64–69

    Google Scholar 

  • Raddad EAY, Salih AA, El Fadl MA, Kaarakka V, Luukkanen O (2005) Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275:261–269

    Article  CAS  Google Scholar 

  • Roggy JC, Prévost MF, Garbaye J, Domenach AM (1999a) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J Trop Ecol 15:1–22

    Article  Google Scholar 

  • Roggy JC, Prévost MF, Gourbiere F, Casabianca H, Garbaye J, Domenach AM (1999b) Leaf natural 15N abundance and total N concentration as potential indicators of plant nutrition in legumes and pioneer species in a rain forest in French Guiana. Oecologia 120:171–182

    Article  Google Scholar 

  • Roggy JC, Moiroud A, Lensi R, Domenach AM (2004) Estimating N transfers between N2-fixing actinorhizal species and the non-N2-fixing Prunus avium under partially controlled conditions. Biol Fertil Soils 39:312–319

    Article  Google Scholar 

  • Roskoski JP (1982) Nitrogen fixation in a Mexican coffee plantation. Plant Soil 67:283–291

    Article  CAS  Google Scholar 

  • Roskoski JP, Van Kessel C (1985) Annual, seasonal and field variation in nitrogen fixing activity by Inga jinicuil, a tropical legume tree. Oikos 44:306–312

    Article  Google Scholar 

  • Roupsard O (1997) Ecophysiologie et diversité génétique de Faidherbia albida (Del.) A. Chev. (syn. Acacia albida Del.), un arbre à usages multiples d’Afrique semi-aride : fonctionnement hydrique et efficience d’utilisation de l’eau d’arbres adultes en parc agroforestier et de juvéniles en conditions semi-contrôlées. Tome 1: Partie synthèse. Thèse de doctorat, Université Nancy 1, France, 70 p

  • Roupsard O, Ferhi A, Granier A, Pallo F, Depommier D, Mallet B, Joly HI, Dreyer E (1999) Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese west Africa. Funct Ecol 13:460–472

    Article  Google Scholar 

  • Rouvier C, Nazaret S, Fernandez MP, Picard B, Simonet P, Normand P (1992) rrn and nif intergenic spacers and isoenzyme patterns as tools to characterize Casuarina-infective Frankia strains. Acta Oecologica 13:367–516

    Google Scholar 

  • Rowe EC, Cadisch G (2002) Implications of heterogeneity on procedures for estimating plant 15N recovery in hedgerow intercrop systems. Agrofor Syst 54:61–70

    Article  Google Scholar 

  • Rowe EC, Hairiah K, Giller K, van Noordwijk M, Cadisch G (1999) Testing the safety-net role of hedgerow trees by 15N placement at different soil depths. Agrofor Syst 43:81–93

    Article  Google Scholar 

  • Rowe EC, van Noordwijk M, Suprayogo D, Hairiah K, Giller KE, Cadisch G (2001) Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems. Plan Soil 235:167–179

    Article  CAS  Google Scholar 

  • Salas E, Nygren P, Domenach AM, Berninger F, Ramírez C (2001) Estimating biological N2 fixation by a tropical legume tree using the non-nodulating phenophase as the reference in the 15N natural abundance method. Soil Biol Biochem 33:1859–1868

    Article  CAS  Google Scholar 

  • Sanginga N, Danso S, Bowen G (1989) Nodulation and growth response of Allocasuarina and Casuarina species to phosphorus fertilization. Plant Soil 118:125–132

    Article  Google Scholar 

  • Sanginga N, Danso SKA, Mulongoy K, Ojeifo AA (1994) Persistence and recovery of introduced Rhizobium ten years after inoculation on Leucaena leucocephala grown on an Alfisol in Southwestern Nigeria. Plant Soil 159:199–204

    Article  Google Scholar 

  • Sanginga N, Vanlauwe B, Danso SKA (1995) Management of biological N2 fixation in alley cropping systems: estimation and contribution to N balance. Plant Soil 174:119–141

    Article  CAS  Google Scholar 

  • Santana MBM, Rosand PC (1985) Reciclagem de nutrientes em uma plantação de cacau sombreada com eritrina. In: Proceedings of the IX international cocoa research conference, Togo 1984. Cocoa Producers’ Alliance, Lagos, Nigeria, pp 205–210

  • Schimann H, Ponton S, Hättenschwiler S, Ferry B, Lensi R, Domenach AM, Roggy J-C (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol Biochem 40:487–494

    Article  CAS  Google Scholar 

  • Schroth G, Kolbe D, Pity B, Zech W (1995) Searching for criteria for the selection of efficient tree species for fallow improvement, with special reference to carbon and nitrogen. Fertilizer Res 42:297–314

    Article  CAS  Google Scholar 

  • Schulze E-D, Gebauer G, Ziegler H, Lange OL (1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88:451–455

    Article  Google Scholar 

  • Segovia L, Young JP, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum Biovar phaseoli Type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    Article  PubMed  CAS  Google Scholar 

  • Sellstedt A, Ståhl L, Mattsson U, Jonsson K, Högberg P (1993) Can the 15N dilution technique be used to study N2 fixation in tropical tree symbioses as affected by water deficit? J Exp Bot 44:1749–1755

    Article  Google Scholar 

  • Shearer G, Kohl DH (1986) N2 fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Shi Y, Ruan J (1992) DNA base composition and homology values in the classification of some Frankia strains. Acta Microbiol Sin 32:133–136

    Google Scholar 

  • Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903

    Article  CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Heidelberg, pp 33–74

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York

    Google Scholar 

  • Smolander A, Sundman V (1987) Frankia in acid soils of forests devoid of actinorhizal plants. Physiol Plant 70:297–303

    Google Scholar 

  • Snoeck D, Zapata F, Domenach A-M (2000) Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environ 4:95–100

    CAS  Google Scholar 

  • Soto-Pinto L, Anzueto-Martínez M, Mendoza VJ, Jiménez-Ferrer G, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    Article  Google Scholar 

  • Sprent JI (2009) Legume nodulation, a global perspective. Wiley-Blackwell, Oxford

    Google Scholar 

  • Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581

    Article  PubMed  CAS  Google Scholar 

  • Ståhl L, Nyberg G, Högberg P, Buresh RJ (2002) Effects of planted tree fallows on soil nitrogen dynamics above-ground and root biomass, N2-fixation and subsequent maize crop productivity in Kenya. Plant Soil 243:103–117

    Article  Google Scholar 

  • Ståhl L, Högberg P, Sellstedt A, Buresh RJ (2005) Measuring nitrogen fixation by Sesbania sesban planted in fallows using 15N tracer technique in Kenya. Agrofor Syst 65:67–79

    Article  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Thornley JHM, Johnson IR (1990) Plant and crop modelling: a mathematical approach to plant and crop physiology. Clarendon Press, Oxford

    Google Scholar 

  • Tilki F, Fisher RF (1998) Tropical leguminous species for acid soils: studies on plant form and growth in Costa Rica. For Ecol Manag 108:175–192

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Sieman E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Toledo I, Lloret L, Martínez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64

    Article  PubMed  CAS  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availibility on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article  Google Scholar 

  • Trinick MJ (1982) Host-Rhizobium associations. In: Vincent JM (ed) Nitrogen fixation in legumes. Academic Press, Sydney, pp 111–122

    Google Scholar 

  • Turk D, Keyser HH (1992) Rhizobia that nodulate tree legumes: specificity of the host for nodulation and effectiveness. Can J Microbiol 38:451–460

    Article  Google Scholar 

  • Uddin MB, Khan MASA, Mukul SA, Hossain MK (2008) Effects of inorganic fertilizers on biological nitrogen fixation and seedling growth of some agroforestry trees in Bangladesh. J For Res 19:303–306

    Article  CAS  Google Scholar 

  • Uliassi DD, Ruess RW (2002) Limitations to symbiotic nitrogen fixation in primary succession on the Tanana River floodplain. Ecology 83:88–103

    Article  Google Scholar 

  • Unkovich MJ, Pate JS, Lefroy EC, Arthur DJ (2000) Nitrogen isotope fractionation in the fodder tree legume tagasaste (Chamaecytisus proliferus) and assessment of N2 fixation inputs in deep sandy soils of Western Australia. Aust J Plant Physiol 27:921–929

    Google Scholar 

  • Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey R, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Canberra, Australia, 258 p. http://aciar.gov.au/publication/MN136 (accessed 22 June 2012)

  • Uselman SM, Qualls RG, Thomas RB (1999) A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210:21–32

    Article  CAS  Google Scholar 

  • van Kessel C, Roskoski JP (1981) Nodulation and N2 fixation by Inga jinicuil, a woody legume in coffee plantations. II. Effect of soil nutrients on nodulation and N2 fixation. Plant Soil 59:207–215

    Article  Google Scholar 

  • van Kessel C, Farrell RE, Roskoski JP, Keane KM (1994) Recycling of the naturally-occurring 15N in an established stand of Leucaena leucocephala. Soil Biol Biochem 26:757–762

    Article  Google Scholar 

  • van Noordwijk M, Lawson G, Soumaré A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxley P (eds) Tree–crop interactions: a physiological approach. CAB International, Wallingford, pp 319–364

    Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation and exquisite adaptation. Annu Rev Plant Physiol Mol Biol 42:373–392

    Article  CAS  Google Scholar 

  • Vanlauwe B, Swift MJ, Merckx R (1996) Soil litter dynamics and N use in a leucaena (Leucaena leucocephala Lam. (De Witt)) alley cropping system in Southwestern Nigeria. Soil Biol Biochem 28:739–749

    Article  CAS  Google Scholar 

  • Velásquez E, Igual JM, Willems A, Fernández MP, Munoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021

    Article  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp., and cycads. Plant Soil 266:205–230

    Article  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45

    Article  Google Scholar 

  • Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soil and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    Article  PubMed  Google Scholar 

  • Wang Y-P, Houlton BZ, Field CB (2001) A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem Cycles 21:GB1018. doi:10.1029/2006GB002797

  • Wang ET, Rogel MA, Sui XH, Chen WX, Martínez-Romero E, van Berkum P (2002a) Mesorhizobium amorphae, a rhizobial species that nodulates Amorpha fruticosa, is native to American soils. Arch Microbiol 178:301–305

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002b) Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693

    Article  PubMed  CAS  Google Scholar 

  • Wang FQ, Wang ET, Lui J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199

    Article  PubMed  CAS  Google Scholar 

  • Weber J, Ducousso M, Yee Tham F, Nourissier-Mountou S, Galiana A, Prin Y, Lee SK (2005) Co-inoculation of Acacia mangium with Glomus intraradices and Bradyrhizobium sp. in aeroponic culture. Biol Fert Soils 41:233–239

    Article  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

  • Wolde-Meskel E, Terefework Z, Frostegård A, Lindström K (2005) Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 55:1439–1452

    Article  PubMed  CAS  Google Scholar 

  • Woomer P, Singleton P, Bohlool BB (1988) Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbiol 54:1112–1116

    PubMed  CAS  Google Scholar 

  • Young JPW, Haukka K (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

  • Zakhia F, de Lajudie P (2001) Taxonomy of Rhizobia. Minireview. Agronomie 21:569–576

    Article  Google Scholar 

  • Zerihun A, McKenzie BA, Morton JD (1998) Photosynthate costs associated with the utilization of different nitrogen-forms: influence on the carbon balance of plants and shoot-root biomass partitioning. New Phytol 138:1–11

    Article  CAS  Google Scholar 

  • Zhang X, Harper R, Karsisto M, Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113

    Article  Google Scholar 

  • Zitzer SF, Dawson JO (1992) Soil properties and actinorhizal vagetation influence nodulation of Alnus glutinosa and Elaeagnus angustifolia by Frankia. Plant Soil 140:197–204

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper no. 89. World Agroforestry Centre, Nairobi, Kenya

  • Zou X, Binkley D, Caldwell BA (1995) Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in contrasting forests. Soil Sci Soc Am J 59:1452–1458

    Article  CAS  Google Scholar 

  • Zurdo-Piñeiro JL, Velázquez E, Lorite MJ, Brelles-Mariño G, Schröder EC, Bedmar EJ, Mateos PF, Martínez-Molina E (2004) Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst Appl Microbiol 27:469–477

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

An early version of this review was presented in the 2nd World Congress of Agroforestry (Nairobi, August 2009). We thank Dr Anne-Marie Domenach for inspiring discussions and comments on a draft of this review. The contribution of PN was funded by the Academy of Finland (grant 129166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Nygren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygren, P., Fernández, M.P., Harmand, JM. et al. Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems?. Nutr Cycl Agroecosyst 94, 123–160 (2012). https://doi.org/10.1007/s10705-012-9542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-012-9542-9

Keywords

Navigation