Skip to main content
Log in

Comparison of four line-based positional assessment methods by means of synthetic data

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Positional accuracy of spatial data can be assessed by means of line-based methods. In this work we develop an analysis of the following four methods: Hausdorff Distance, Mean Distance, Single Buffer Overlay and Double Buffer Overlay, using a set of 12 synthetic cases. The synthetic cases incorporate specific shape features for bias, random errors and outliers which correspond to simplified versions of real world possibilities. The use of synthetic cases helps us to understand the basic behavioral differences between the methods. Numerical results for the positional accuracy estimations are different between methods and cases due to the different concepts of distance involved and the specific configurations of each case. When the method results in a function, patterns related to different types of errors can be detected in this function. The length-inclusion level of each method is revealed as the base criterion for comparison. The Single Buffer Overlay Method offers the more general solution because it includes the others’ results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbas L, Grussenmeyer P, Hottier P (1995) Contrôle de la planimétrie d´une base de données vectorielles: une nouvelle méthode basée sur la distance de Hausdorff: el méthode du contrôle linéaire. Bul. Societé Française de Photogrammétrie et Télédétection 137:6–11

    Google Scholar 

  2. Alesheikh AA, Blais JA, Chapman MA, Karimi H (1998) Rigorous geospatial data uncertainty models for GISs. In: Lowell K, Jaton A (eds) Spatial accuracy assessment: land information uncertainty in natural resources. Ann Arbor Press, Chelsea, pp 195–202

    Google Scholar 

  3. Ariza-López FJ (2002) Control de calidad en la producción cartográfica. Ra-Ma, Madrid

    Google Scholar 

  4. Ariza-López FJ (2007) Control posicional en Cartografía por elementos lineales (ConPoCar). Informe final. Universidad de Jaén

  5. Ariza-López FJ, Atkinson-Gordo AD (2008) Variability of NSSDA estimations. J Surv Eng 134(2):404–407

    Article  Google Scholar 

  6. Ariza-López FJ, Atkinson-Gordo AD (2008) Analysis of some positional accuracy assessment methodologies. J Surv Eng 134(2):404–407

    Article  Google Scholar 

  7. Ariza-López FJ, Atkinson-Gordo AD, Rodríguez-Avi J (2008) Acceptance curves for the positional control of geographic data bases. J Surv Eng 134(1):26–32

    Article  Google Scholar 

  8. ASCE (1983) Map uses, scales and accuracies for engineering and associated purposes. American society of civil engineers, Committee on Cartographic Surveying, Surveying and Mapping Division, New York

  9. ASPRS (1989) Accuracy standards for large scale maps. Photogramm Eng Remote Sens 56(7):1068–1070

    Google Scholar 

  10. Atkinson-Gordo AD, Ariza-Lopez FJ (2002) Nuevo enfoque para el análisis de la calidad posicional en cartografía mediante estudios basados en la geometría lineal. Proceedings XIV International Congress of Engineering Graphics, Santander, Spain, pp 1–10.

  11. Blakemore M (1984) Generalization and error in spatial data bases. Cartographica 21(2&3):131–139

    Article  Google Scholar 

  12. Carmel Y, Flather C, Dean D (2006) A methodology for translating positional error into measures of attribute error, and combining the two error sources. In Caetano, M. and Painho, M. (eds.) Proceedings of Accuracy 2006. 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon, pp 3–17.

  13. Chen CC, Knoblock CA, Shahabi C (2008) Automatically and accurately conflating raster maps with orthoimagery. GeoInformatica 12:377–410

    Article  Google Scholar 

  14. Chrisman NR (1982) A theory of cartographic error and its measurement in digital data bases, Auto-Carto 5 - Proceedings, Crystal City, Virginia, pp 159–168

  15. Chrisman NR (1991) The error component in spatial data. In: Maguire DJ, Goodchild MF, Rhind DW (eds) Geographical information systems: principles and applications. Longman, Essex, pp 165–174

    Google Scholar 

  16. Church R, Curtin K, Fohl P, Funk C, Goodchild M, Kyriakidis P, Noronha V (1998) Positional distortion in geographic data sets as a barrier to interoperation. Technical papers ACSM. American Congress on Surveying and Mapping, Bethesda

    Google Scholar 

  17. Deza E, Deza MM (2006) Dictionary of distances. Elsevier, Amsterdam

    Google Scholar 

  18. Dutton GH (1999) Scale, sinuosity and point selection in digital line generalization. Cartogr Geogr Inf Sci 26(1):33–53

    Article  Google Scholar 

  19. EuroSDR. (2004) Positional Accuracy Improvement: Impacts of improving the positional accuracy of GI databases. Publication No. 48. <http://www.eurosdr.net/km_pub/no48/html/positional/positional_index.htm> (January 13, 2010).

  20. FGDC (1998) FGDC-STD-007: geospatial positioning accuracy standards, part 3. National standard for spatial data accuracy. Federal Geographic Data Committee, Reston

    Google Scholar 

  21. Giordano A, Veregin H (1994) Il controllo di qualitá nei sistemei informative territoriali. Il Cardo Editore, Venetia

  22. Goeman W, Martínez-Fonte L, Bellens R, Gautama S (2005) Image based accuracy assessment of geographical line data sets. In Proceedings ProRISC 2005, pp 619–624

  23. Goodchild MF, Hunter G (1997) A simple positional accuracy measure for linear features. Int J Geogr Inf Sci 11(3):299–206

    Article  Google Scholar 

  24. Gruber G, Menard C, Schachinger B (2008) Evaluation of the geometric accuracy of automatically recorded 3D City Models compared to GIS data. In Lecture Notes in Geoinformation and Cartography (The European Information Society). Springer, Berlin, pp 67–78

    Google Scholar 

  25. Hangouët JF (1995) Computation of the Hausdorff Distance between plane vector polylines. AutoCarto 12:1–10

    Google Scholar 

  26. Heo J, Woo J, Sang JS (2008) New line accuracy assessment methodology using nonlinear least-squares estimation. J Surv Eng 134(1):13–20

    Article  Google Scholar 

  27. ISO (2002) ISO 19113: geographic information - quality principles. International Organization for Standardization, Geneva

    Google Scholar 

  28. Jakobsson A, Vauglin F (2002) Report of a questionnaire on data quality in National Mapping Agencies. CERCO Working Group on Quality. Comité Européen des Responsables de Cartographie Officielle, Marne-la-Vallée

  29. Joao EM (1995) The importance of quantifying the effects of generalization. In: Müller JC, Weibel R, Legrange JP (eds) GIS and generalization, methodology and practice. Taylor & Francis, London, pp 183–193

    Google Scholar 

  30. Joao EM (1998) Causes and consequences of map generalisation. Taylor & Francis, London

    Google Scholar 

  31. Johnston D, Timlin D, Szafoni D, Casanova J, Dilks K (2000) Quality assurance/quality control procedures for ITAM GIS databases. US Army Corps of Engineers, Engineer Research and Development Center

  32. Kagawa Y, Sekimoto Y, Shibaski R (1999) Comparative study of positional accuracy evaluation of line data. In proceedings of the asian association on remote sensing (ProRISC 2005)

  33. Keefer BJ, Smith JL, Gregoire TG (1988) Simulating manual digitizing error with statistical models. In Proceedings of GIS/LIS 88, San Antonio, Texas, pp 475–483

  34. Leung Y, Ma J (2004) A general framework for error analysis in measurement based GIS. Part 1: the basis measurement-error model and related concepts. J Geogr Syst 6(4):325–354

    Article  Google Scholar 

  35. Mustière S, Devogele T (2008) Matching networks with different levels of detail. GeoInformatica 12:435–453

    Article  Google Scholar 

  36. OS (2000) Information paper 4/2000. Positional accuracy of mapping data at 1:2500 scale. Resolving a problem in consultation with customers. Ordnance Survey GB, London

  37. Perkal J (1966) On the length of empirical curves. Discussion paper 10, Ann Arbor, Michigan Inter-University Community of Mathematical Geographers

  38. Shi W (1998) A generic statistical approach for modeling error of geometric features in GIS. Int J Geogr Inf Sci 12(2):131–143

    Article  Google Scholar 

  39. Shi W, Liu W (2001) A stochastic process-based model for the positional error of a line segments in GIS. Int J Geogr Inf Sci 14(1):51–66

    Article  Google Scholar 

  40. Skidmore A, Turner B (1992) Map accuracy assessment using line intersect sampling. Photogramm Eng Remote Sens 58(10):1453–1457

    Google Scholar 

  41. Tveite H, Langaas S (1995) Accuracy assessment of geographical line data sets, the case of the digital chart of the world. In Proceedings of the 5th Scandinavian Research Conference on Geographical Information Systems (ScanGIS’95)

  42. Tveite H, Langaas S (1999) An accuracy assessment method for geographical line data sets based on buffering. Int J Geogr Inf Sci 13(1):27–47

    Article  Google Scholar 

  43. Van Niel T, McVicar TR (2002) Experimental evaluation of positional accuracy estimates from linear network using point and line based testing methods. Int J Geogr Inf Sci 16(5):455–473

    Article  Google Scholar 

  44. Veregin H (2000) Quantifying positional error induced by line simplification. Int J Geogr Inf Sci 14(2):113–130

    Article  Google Scholar 

  45. Wiedemann C (2003) External evaluation of road networks. In ISPRS Archives, vol. XXXIV, Part 3/W8, Munich, 17–19 Sept, 2003, pp 93–98

Download references

Acknowledgements

This work has been partially funded by the National Ministry of Sciences and Technology of the Kingdom of Spain under grant nº BIA2003-02234. The authors also acknowledge the Regional Government of Andalusia (Spain) for the grant P08-TIC-4199 and for the financial support since 1997 to their research group with code PAI-TEP-164 partially by means of the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Ariza-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariza-López, F.J., Mozas-Calvache, A.T. Comparison of four line-based positional assessment methods by means of synthetic data. Geoinformatica 16, 221–243 (2012). https://doi.org/10.1007/s10707-011-0130-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-011-0130-y

Keywords

Navigation