Skip to main content

Advertisement

Log in

Whole genome approaches to quantitative genetics

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Apart from parent-offspring pairs and clones, relative pairs vary in the proportion of the genome that they share identical by descent. In the past, quantitative geneticists have used the expected value of sharing genes by descent to estimate genetic parameters and predict breeding values. With the possibility to genotype individuals for many markers across the genome it is now possible to empirically estimate the actual relationship between relatives. We review some of the theory underlying the variation in genetic identity, show applications to estimating genetic variance for height in humans and discuss other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  PubMed  CAS  Google Scholar 

  • Bulmer MG (1985) The mathematical theory of quantitative genetics. Clarendon Press, Oxford

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Franklin IR (1977) The distribution of the proportion of the genome which is homozygous by descent in inbred individuals. Theor Popul Biol 11:60–80

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  PubMed  CAS  Google Scholar 

  • Gagnon A, Beise J, Vaupel JW (2005) Genome-wide identity-by-descent sharing among CEPH siblings. Genet Epidemiol 29:215–224

    Article  PubMed  Google Scholar 

  • Guo SW (1994) Computation of identity-by-descent proportions shared by two siblings. Am J Hum Genet 54:1104–1109

    PubMed  CAS  Google Scholar 

  • Guo SW (1995) Proportion of genome shared identical by descent by relatives: concept, computation, and applications. Am J Hum Genet 56:1468–1476

    PubMed  CAS  Google Scholar 

  • Guo SW (1996) Variation in genetic identity among relatives. Hum Hered 46:61–70

    Article  PubMed  CAS  Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19

    Article  PubMed  CAS  Google Scholar 

  • Hill WG (1993a) Variation in genetic composition in backcrossing programs. J Hered 84:212–213

    Google Scholar 

  • Hill WG (1993b) Variation in genetic identity within kinships. Heredity 71:652–653

    Article  Google Scholar 

  • Kent JW Jr, Dyer TD, Blangero J (2005) Estimating the additive genetic effect of the X chromosome. Genet Epidemiol 29:377–388

    Article  PubMed  Google Scholar 

  • Kong X, Murphy K, Raj T, He C, White PS, Matise TC (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Risch N, Lange K (1979) Application of a recombination model in calculating the variance of sib pair genetic identity. Ann Hum Genet 43:177–186

    Article  PubMed  CAS  Google Scholar 

  • Stam P (1980) The distribution of the fraction of the genome identical by descent in finite random mating populations. Genet Res 35:131–155

    Article  Google Scholar 

  • Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238

    Article  Google Scholar 

  • Suarez BK, Reich T, Fishman PM (1979) Variability in sib pair genetic identity. Hum Hered 29:37–41

    Article  PubMed  CAS  Google Scholar 

  • Thomas SC (2005) The estimation of genetic relationships using molecular markers and their efficiency in estimating heritability in natural populations. Philos Trans R Soc Lond B Biol Sci 360:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Thomas SC, Pemberton JM, Hill WG (2000) Estimating variance components in natural populations using inferred relationships. Heredity 84(Pt 4):427–436

    Article  PubMed  Google Scholar 

  • Thomas SC, Coltman DW, Pemberton JM (2002) The use of marker-based relationship information to estimate the heritability of body weight in a natural population: a cautionary tale. J Evol Biol 15:92–99

    Article  Google Scholar 

  • Visscher PM, Hopper JL (2001) Power of regression and maximum likelihood methods to map QTL from sib-pair and DZ twin data. Ann Hum Genet 65:583–601

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Medland SE, Ferreira MA, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG (2006) Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2:e41

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, Hill WG, Hottenga JJ, Willemsen G, Boomsma DI, Liu Y-Z, Deng HW, Montgomery GW, Martin NG (2007) Genome partitioning of genetic variation for height from 11, 214 sibling pairs. Am J Hum Genet 81:1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2006) Population genetics: separating nurture from nature in estimating heritability. Heredity 97:256–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Australian National Health and Medical Research Council (grants 389892 and 442915) and the Australian Research Council (grant DP0770096), and thank Bill Hill, Mike Goddard, Nick Martin and Naomi Wray for many stimulating discussions and two referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Visscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visscher, P.M. Whole genome approaches to quantitative genetics. Genetica 136, 351–358 (2009). https://doi.org/10.1007/s10709-008-9301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9301-7

Keywords

Navigation