Skip to main content

Advertisement

Log in

Genetic diversity of four populations of Qualea grandiflora Mart. in fragments of the Brazilian Cerrado

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We analyzed the genetic structure and diversity of Qualea grandiflora Mart., the most abundant woody species in the Brazilian Cerrado. Eight microsatellite loci were used to analyze samples from four populations subjected to different types of anthropic pressure, distributed throughout the state of São Paulo in the regions of Assis, Brotas, Itirapina and Pedregulho. Results indicated a mean number of 12 alleles per locus, but only six effective alleles. Alleles private to particular populations and rare alleles were also detected. An excess of homozygotes and moderate levels of inbreeding were observed. No clones were identified. All populations departed from Hardy–Weinberg equilibrium (p < 0.05). Spatial structure was observed in the distribution of specimens in distance classes ranging from 30 to 40 km and three genetic clusters were identified, with genotypes in the Pedregulho population differing from the others by up to 90 %. The influence of the Wahlund effect on the studied populations lies between 8.5 and 53.3 %. Estimates of effective population size were low (<10), and the minimum viable area for conservation in the short-, medium- and long-term was estimated to be between 4 and 184 ha. Gene flow was high enough to counter the effects of genetic drift. The genetic diversity and divergence between the studied populations indicated that the Pedregulho population should be considered an Evolutionary Significant Unit and a Management Unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida SP, Proença CEB, Sano SM, Ribeiro JF (1998) Cerrado: espécies vegetais úteis. Embrapa Cerrados, Planaltina

    Google Scholar 

  • Antiqueira LMOR (2013) Application of microsatellite molecular markers in studies of genetic diversity and conservation of plant species of Cerrado. Journal of Plant Sciences 1(1):1–5

    Google Scholar 

  • Antiqueira LMOR, Kageyama PY (2013) Reproductive system and pollen flow in progenies of Qualea grandiflora Mart, a typical species of the Brazilian Cerrado. Submitted

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Book  Google Scholar 

  • Ayres MCC, Escórcio SP, Da Costa DA, Chaves MH, Vieira GM Jr, Cavalheiro AJ (2008) Constituintes químicos das folhas de Qualea grandiflora: atribuição dos dados de RMN de dois flavonóides glicosilados acilados diastereoisoméricos. Quim Nova 31(6):1481–1484

    Article  CAS  Google Scholar 

  • Brasil (2006) Programa Nacional de Conservação e Uso Sustentável do Bioma Cerrado—Programa Cerrado Sustentável. Brasília

  • Brasil (2010) Monitoramento do Bioma Cerrado 2009–2010. Brasília

  • Brede EG, Beebee TJ (2004) Contrasting population structures in two sympatric anurans: implications for species conservation. Heredity (Edinb) 92(2):110–117

    Article  CAS  Google Scholar 

  • Chakraborty R, Jin L (1992) Heterozygote deficiency, population substructure and their implications in DNA fingerprinting. Hum Genet 88:267–272

    CAS  PubMed  Google Scholar 

  • Cockerham CC (1969) Variance of gene frequency. Evolution 23(1):72–74

    Article  Google Scholar 

  • Conservation International (2005) Hotspots Revisitados: As regiões biologicamente mais ricas e ameaçadas do planeta. www.conservation.org.br/publicacoes/files/HotspotsRevisitados.pdf. Accessed 03 Nov 2013

  • Cornuet JM, Luikart G (1997) Description and power analysys of two tests for detecting recent population bottlenecks for allele frequency data. Genetics 144:2001–2014

    Google Scholar 

  • Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Report 19:299–306

    Article  CAS  Google Scholar 

  • Crow JF, Aoki K (1984) Group selection for polygenic behavioral trait: estimating the degree of population subdivision. In: Proceedings of the National Academy of Science of the United States of America 81:6073–6077

  • Crozier RH, Oldroyd BP, Tay WT, Kaufmann BE, Johnson RN, Carew ME, Jennings KM (1997) Molecular advances in understanding social insect population structure. Electrophoresis 18(9):1672–1675

    Article  CAS  PubMed  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. In: Proceedings of the National Academy of Science of the United States of America 91 (8):3166–3170

  • Diniz Filho JAF, Telles MPC (2006) Optimization procedures for estabilishing reserve networks for biodiversity conservation taking into account populationa genetic structure. Genet Mol Biol 29:207–214

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Durigan G (2003) Bases e diretrizes para a restauração da vegetação do Cerrado. In: Kageyama PY, Oliveira RE, Moraes LFO, Engel VE, Gandara FB (eds) Restauração Ecológica de Sistemas Naturais. FEPAP, Botucatu, pp 187–204

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Felfili JM, Silva M Jr (1993) A comparative study of Cerrado (sensu stricto) vegetation in Central Brazil. J Trop Ecol 9:277–289

    Article  Google Scholar 

  • Felfili JM, Sousa Silva JC, Scariot A (2005) Biodiversidade, Ecologia e Conservação do Cerrado: avanços no conhecimento. In: Scariot A, Sousa Silva JC, Felfili JM (eds) Cerrado: Ecologia, Biodiversidade e Conservação. Ministério do Meio Ambiente., Brasília

  • Felippe GM (1990) Qualea grandiflora: the seed and its germination. Revista Brasileira de Botânica 13:33–37

    Google Scholar 

  • Ferreira ME, Grattapaglia D (1998) Introdução ao uso de marcadores moleculares em análise genética. Embrapa Cenargen, Brasília

    Google Scholar 

  • Frankham R (2003) Genetics and conservation biology. C R Biol 326(Suppl 1):S22–S29

    Article  PubMed  Google Scholar 

  • Frankham R (2005) Conservation biology: ecosystem recovery enhanced by genotypic diversity. Heredity (Edinb) 95(3):183

    Article  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices. 2.9.3

  • Govindajaru RD (1989) Variation in gene flow levels among predominantly self pollinated plants. J Evol Biol 2:173–181

    Article  Google Scholar 

  • Graudal L, Kjaer E, Thomsen A, Larsen AB (1997) Planning national programmes for conservation of forest genetic resources. Tech Notes 48:1–58

    Google Scholar 

  • Hardy O, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hitchings SP, Beebee TJ (1997) Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity (Edinb) 79(Pt 2):117–127

    Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106

    Article  PubMed  Google Scholar 

  • Kimura M, Ota T (1975) Distribution of allelic frequencies in a finite population under stepwise production of neutral alleles. Proc Natl Acad Sci USA 72(7):2761–2764

    Article  CAS  PubMed  Google Scholar 

  • Klink CA, Machado R (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19(3):707–713

    Article  Google Scholar 

  • Kronka FJN, Nalon MA, Matsukuma CK, Pavão M, Kanashiro MM, Ywane MSS, Lima LMPR, Durigan G, Guillamoun JR, Baitello JB, Monteiro CHB, Pontinha AAS, Borgo SC (2005) Inventário florestal da vegetação natural do Estado de São Paulo. Imprensa Oficial, São Paulo

    Google Scholar 

  • Lee SL, Ng KKS, Saw LG, Norwati A, Salwana MHS, Lee CT, Norwati M (2002) Population genetics of Intsia paelmbanica (Leguminosae) and genetic conservation of Virgin Jungle Reserves in Peninsular Malaysia. Am J Bot 89:447–459

    Article  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82(11):1420–1425

    Article  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12(1):228–237

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (1996) A quantitative-genetic perspective on conservation issues. In: Avise JC, Hamrick JL (eds) Conservation genetics: case studies from nature. Chapman & Hall, New York, pp 471–501

    Chapter  Google Scholar 

  • Mittermeier RA, Gil RP, Hoffman M, Pilgrim J, Brooks TM, Mittermeier CG, Lamoreux J, Fonseca GAB (2005) Hotspots revisited: earth′s biologically richest and most endangered terrestrial ecoregions. Cemex, Boston

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 33:201–204

    Article  Google Scholar 

  • Pasboll PJ, Berube M, Allendor FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22(1):11–16

    Article  Google Scholar 

  • Pinheiro ES, Durigan G (2009) Dinâmica espaço-temporal (1962-2006) das fitofisionomias em unidade de conservação do Cerrado no sudeste do Brasil. Revista Brasileira de Botânica 32:441–454

    Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective size using allele frequency data. Heredity 90:502–503

    Article  Google Scholar 

  • Pritchard J, Sthepens M, Donnelly P (2000) Inference of population structure using multilocos genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinb J Bot 60(1):57–109

    Article  Google Scholar 

  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma cerrado. In: Sano S, Almeida SP (eds) Cerrado: ambiente e flora. Embrapa Cerrados, Planaltina, pp 87–166

    Google Scholar 

  • Ritter LMO (2012) Diversidade genética de Qualea grandiflora Mart estimada por microssatélites em quatro áreas de Cerrado do estado de São Paulo. Universidade de São Paulo—Escola Superior de Agricultura Luiz de Queiroz, Piracicaba

  • Ritter LMO, Bajay MM, Monteiro M, Souza RGVC, Moreno MA, Kageyama PY (2012) Development of microsatellite markers for Qualea grandiflora Mart (Vochysiaceae), typical species of Brazilian Cerrado. Am J Bot 99(3):e97–e98

    Google Scholar 

  • Rolim GS, Camargo MBP, Laniall DG, Moraes JFL (2007) Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de São Paulo. Bragantia 66(4):711–720

    Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA (2002) Structure of human populations. Science 20:2381–2385

    Article  Google Scholar 

  • Ryder O (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Shapcott A (1995) The spatial genetic structure in natural populations of the Australian temperaterainforest tree Atherosperma moschatum Labill. (Monimiaceae). Heredity 74:28–38

    Article  Google Scholar 

  • Silberbauer-Gottsberger I, Gottsberger G (1975) Uber sphingophile Angiospermen Brasiliens. Plants Syst Evolut 123:157–184

    Article  Google Scholar 

  • Silva JMC, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. Bioscience 52:225–233

    Article  Google Scholar 

  • Stockwell CA, Mulvey M, Jones AG (1998) Genetic evidence for two evolutionarily significant units of White Sands pupfish. Anim Conserv 1(3):213–225

    Article  Google Scholar 

  • Sugg DW, Chesser RK (1994) Effective population size with multiple paternity. Genetics 137:1147–1155

    CAS  PubMed  Google Scholar 

  • Taylor BL, Dizon AE (1999) First policy then science: why a management unit based solely on genetic criteria cannot work. Mol Ecol 8:11–16

    Article  Google Scholar 

  • Van Rossum F, Prentice HC (2004) Structure of allozyme variation in Nordic Silene nutans (Caryophyllaceae): population size, geographical position and immigration history. Biol J Linn Soc 81(3):357–371

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography : ecology, evolution, and conservation. Oxford biology, 2nd edn. Oxford University Press, New York, Oxford

    Google Scholar 

  • Wright A (1938) Size of population and breeding structure in relation to evolution. Science 87(430):2263–2264

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15(4):313–354

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support (Grants 2007/06648-1 and 2008/06834-2), the research group LARGEA (Laboratório de Reprodução e Genética de Espécies Arbóreas—USP/ESALQ) for technical assistance, Lucas Antiqueira for revising this manuscript, and the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Maris Orth Ritter Antiqueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antiqueira, L.M.O.R., Kageyama, P.Y. Genetic diversity of four populations of Qualea grandiflora Mart. in fragments of the Brazilian Cerrado. Genetica 142, 11–21 (2014). https://doi.org/10.1007/s10709-013-9750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9750-5

Keywords

Navigation