Skip to main content
Log in

Phylogeography of specialist weevil Trichobaris soror: a seed predator of Datura stramonium

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Can the genetic structure of a specialist weevil be explained by the geological history of their distribution zone? We analyze the genetic variation of the weevil Trichobaris soror, a specialist seed predator of Datura stramonium, in order to address this question. For the phylogeographic analysis we used the COI gene, and assessed species identity in weevil populations through geometric morphometric approach. In total, we found 53 haplotypes in 413 samples, whose genetic variation supports the formation of three groups: (1) the Transmexican Volcanic Belt (TVB group), (2) the Sierra Madre Sur (SMS group) and (3) the Balsas Basin (BB group). The morphometric analysis suggests that BB group is probably not T. soror. Our results have two implications: first, the phylogeographic pattern of T. soror is explained by both the formation of the geological provinces where it is currently distributed and the coevolution with its host plant, because the TVB and SMS groups could be separated due to the discontinuity of altitude between the geological provinces, but the recent population expansion of TVB group and the high frequency of only one haplotype can be due to specialization to the host plant. Second, we report a new record of a different species of weevil in BB group parasitizing D. stramonium fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anducho-Reyes MA, Cognato AI, Hayes JL, Zúñiga G (2008) Phylogeography of the bark beetle Dendroctonus mexicanus Hopkins (Coleoptera: Curculionidae: Scolytinae). Mol Phylogenet Evol 49:930–940

    Article  CAS  PubMed  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48 www.fluxus-engineering.com

  • Barber HS (1935) The tobacco and solanum weevils of the genus Trichobaris. Miscellaneous Publication No. 226. United States Department of Agriculture, Washington DC, 28 p

    Google Scholar 

  • Barclay AS (1959a) New considerations in an old genus: Datura. Harvard University, Botanical Museum Leaflets, pp 245–272

    Google Scholar 

  • Barclay AS (1959b) Studies in the genus Datura (Solanaceae). I. Taxonomy of subgenus Datura. Dissertation, Harvard University

  • Cabrales-Vargas RA (1991) Demografía e historia natural de Datura stramonium L. en el Pedregal de San Angel con algunas implicaciones evolutivas. Tesis de Licenciatura, Facultad de Ciencias, UNAM

  • Cevallos-Ferriz S, Gonzáles-Torres E (2005) Geological setting and phytodiversity in Mexico. In: Vega J et al (eds) Studies on mexican paleontology. Springer, Netherlands, pp 1–18

    Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Collins LS, Budd AF, Coates AG (1996) Earliest evolution associated with closure of the tropical American seaway. Proc Natl Acad Sci USA 93:6069–6072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuda JP, Burke HR (1991) Biology of Trichobaris bridwelli (Coleoptera: Curculionidae), a possible agent for the biological control of Datura stramonium (Solanaceae). Environ Entomol 20(3):899–908

    Article  Google Scholar 

  • Diezel C, Kessler D, Baldwin IT (2001) Pithy Protection: Nicotiana attenuata’s jasmonic acid-mediated defenses are required to resist stem-boring weevil larvae. Plant Physiol 155:1936–1946

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Dupanloup SS, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Evanno GS, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13(4):853–864

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed Central  CAS  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical test of neutrality mutations. Genetics 147:915–923

    Google Scholar 

  • Halffter G (1964) La entomofauna americana, ideas acerca de su origen y distribución. Folia Entomologica Mexicana 6:1–108

    Google Scholar 

  • Hernández CJ (2009) Ecología de la interacción tritrófica Datura stramonium-Trichobaris sp.-parasitoides. Tesis Maestría, Instituto de Ecología UNAM

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference for phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Kelley ST, Farrell BD (1998) Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetle (Scolytidae). Evolution 52:1731–1743

    Article  CAS  Google Scholar 

  • Kelley ST, Farrell DB, Mitton BJ (2000) Effects of specialization on genetic differentiation in sister species of bark beetles. Heredity 84:218–227

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11(2):353–357

    Article  PubMed  Google Scholar 

  • Mock KE, Bentz BJ, O’neill EM, Chong JP, Orwin J, Pfrender ME (2007) Landscape scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae). Mol Ecol 16(3):553–568

    Article  CAS  PubMed  Google Scholar 

  • Morrone JJ (2015) Halffter’s Mexican transition zone (1962–2014), cenocrons and evolutionary biogeography. J Zool Syst Evolut Res. doi:10.1111/jzs.12098

    Google Scholar 

  • Morse GE, Farrell B (2005) Interspecific phylogeography of the Stator limbatus species complex: the geographic context of speciation and specialization. Mol Phylogenet Evol 36:201–213

    Article  PubMed  Google Scholar 

  • Nakamine H, Takeda M (2008) Molecular phylogenetic relationships of flightless beetles belonging to the genus Mesechthistatus Breuning, (Coleoptera: Cerambycidae) inferred from mitochondrial COI sequences. J Insect Sci 8:1–11

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Padilla RJ, Sánchez Y et al (2007) Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de Mexico. Boletín de la Sociedad Geológica Mexicana. LIX 1:19–42

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rambaut A (2006) FigTree: computer program. http://tree.bio.ed.ac.uk/software/figtree/

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9(3):552–569

    CAS  PubMed  Google Scholar 

  • Rozas (2003) DNASP 4.20 computer program. http://www.ub.es/dnasp/DnaSPOS.html

  • Sánchez-Sánchez H, López-Barrera G, Peñaloza-Ramírez JM, Rocha-Ramírez V, Oyama K (2012) Phylogeography reveals routes of colonization of the bark beetle Dendroctonus approximatus Dietz in Mexico. J Hered. doi:10.1093/jhered/ess043

    PubMed  Google Scholar 

  • Sota T, Hayashi M, Iwai D (2004) Phylogeography of the leaf beetle Chrysolina virgata in wetlands of Japan inferred from the distribution of mitochondrial haplotypes. Entomol Sci 7:381–388

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toju H, Ueno S, Taniguchi F, Sota T (2011) Metapopulation structure of a seed–predator weevil and its host plant in arms race coevolution. Evolution 65(6):1707–1722

    Article  PubMed  Google Scholar 

  • Vega F, Nyborg TG, Perrilliant MC, Montellano-Ballesteros M, Cevallos Ferriz SRS, Quiroz-Barroso SA (2006) Studies on Mexican paleontology. Springer, Netherlands

    Book  Google Scholar 

  • Warwick SI (1990) Allozyme and life history variation in five northwardly colonizing North American weed species. Plant Syst Evol 169(1–2):41–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Tapia-López for her technical support; G. Castillo and E. Olmedo-Vicente for field assistance during sampling. A. Vázquez-Lobo, E. Calderón and C. Pinacho-Pinacho for assistance in the Results section. We are very grateful to Allison J. Shultz for correcting the English grammar, and P. Cuéllar-Silva for reviewing the manuscript. Funding was provided by PAPIIT-UNAM (IN-212214), and CONACYT grant “Evolución Adaptativa en Datura: Resistencia y tolerancia a los herbívoros”. M De-la-Mora acknowledges the scholarship from CONACyT for graduate studies. This paper is a partial fulfillment of the Graduate Program in Biological Sciences, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Núñez-Farfán.

Ethics declarations

Conflict of interest

Authors do not have any financial relationship with the organization that funded the research. The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De-la-Mora, M., Piñero, D. & Núñez-Farfán, J. Phylogeography of specialist weevil Trichobaris soror: a seed predator of Datura stramonium . Genetica 143, 681–691 (2015). https://doi.org/10.1007/s10709-015-9866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9866-x

Keywords

Navigation