Skip to main content
Log in

On the Limit Set of Discrete Subgroups of PU(2,1)

  • Original Article
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let G be a discrete subgroup of PU(2,1); G acts on \(P^2_\mathbb C\) preserving the unit ball \(\mathbf H^2 _{\mathbb C}\), equipped with the Bergman metric. Let \(L(G) \subset S^3 = \partial \mathbf H^2 _{\mathbb C}\) be the limit set of G in the sense of Chen–Greenberg, and let\(\Lambda(G) \subset P^2_{\mathbb C}\) be the limit set of the G-action on\(P^2_{\mathbb C}\) in the sense of Kulkarni. We prove that L(G) = Λ(G) ∩ S 3 and Λ(G) is the union of all complex projective lines in \(P^2_\mathbb C\) which are tangent to S 3 at a point in L(G).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beardon A. The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91. Springer-Verlag, New York (1983)

  2. Chen S.S., Greenberg L. (1974) Hyperbolic Spaces. Contributions to Analysis. Academic Press, New York, pp. 49–87

    Google Scholar 

  3. Eberlein P. (1972) Geodesic flows on negatively curved manifolds I. Ann. Math. Num. 95, 492–510

    MathSciNet  Google Scholar 

  4. Giraud, G. Sur certaines fonctions automorphes de deux variables. Ann. Ecole Norm. (3) 38, 43–164 (1921)

    Google Scholar 

  5. Goldman, W. Complex Hyperbolic Geometry. Oxford Science Publications (1999)

  6. Kamiya S. (1982) Notes on non-discrete subgroups of Û(1, n; F). Hiroshima Math. J. Num. 13, 501–506

    MathSciNet  Google Scholar 

  7. Kamiya S. (1991) Notes on elements of U(1,n; \(\mathbb {C}\)). Hiroshima Math. J. Num. 21, 23–45

    MATH  MathSciNet  Google Scholar 

  8. Kulkarni R.S. (1978) Groups with domains of discontinuity. Math. Ann. Num. 237, 253–272

    MATH  MathSciNet  Google Scholar 

  9. Maskit, B. Kleinian Groups. A Series of Comprehensive Studies in Mathematics, vol. 287. Springer-Verlag, New York (1988)

  10. Mostow G.D. (1980) On a remarkable class of polyhedra in complex hyperbolic space. Pacific J. Math. Num. 86, 171–276

    MATH  MathSciNet  Google Scholar 

  11. Palis, J., de Melo, W. Geometric Theory of Dynamical Systems: An Introduction. Springer-Verlag, New York (1982)

  12. Seade J., Verjovsky A. (2001) Actions of discrete groups on complex projective spaces. Contemp. Math. Num. 269, 155–178

    MathSciNet  Google Scholar 

  13. Seade J., Verjovsky A. (2002) Higher dimensional complex Kleinian groups. Math. Ann. Num. 322, 279–300

    MATH  MathSciNet  Google Scholar 

  14. Siegel C.L. (1943) Discontinuous groups. Ann. Math. Num. 44, 674–689

    Google Scholar 

  15. Sienra G. (2004) Complex Kleinian groups and limit sets in P 2. Complex Variables 49(10): 689–701

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -P. Navarrete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarrete, J.P. On the Limit Set of Discrete Subgroups of PU(2,1). Geom Dedicata 122, 1–13 (2006). https://doi.org/10.1007/s10711-006-9051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9051-6

Keywords

Mathematics Subject Classification (2000)

Navigation