Skip to main content
Log in

Convolution of convex valuations

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We show that the natural “convolution” on the space of smooth, even, translation-invariant convex valuations on a euclidean space V, obtained by intertwining the product and the duality transform of S. Alesker J. Differential Geom. 63: 63–95, 2003; Geom.Funct. Anal. 14:1–26, 2004 may be expressed in terms of Minkowski sum. Furthermore the resulting product extends naturally to odd valuations as well. Based on this technical result we give an application to integral geometry, generalizing Hadwiger’s additive kinematic formula for SO(V) Convex Geometry, North Holland, 1993 to general compact groups \(G \subset O(V)\) acting transitively on the sphere: it turns out that these formulas are in a natural sense dual to the usual (intersection) kinematic formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alesker S. (2001). Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Func. Anal. 11: 244–272

    Article  MATH  MathSciNet  Google Scholar 

  2. Alesker S. (2003). Hard Lefschetz theorem for valuations, complex integral geometry and unitarily invariant valuations. J. Differential Geom. 63: 63–95

    MATH  MathSciNet  Google Scholar 

  3. Alesker, S.: Hard Lefschetz theorem for valuations and related questions of integral geometry. In: Milman, V.D. (ed.) Geometric aspects of functional analysis, pp. 9–20, LNM 1850. Springer, Berlin,Heidelberg Newyork (2004)

  4. Alesker S. (2004). The multiplicative structure on polynomial valuations. Geom. Funct. Anal. 14: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  5. Alesker, S.: Theory of valuations on manifolds I. Linear spaces. To appear in Israel J. Math.

  6. Alesker S. (2006). Theory of valuations on manifolds II. Adv. Math. 207: 420–454

    Article  MATH  MathSciNet  Google Scholar 

  7. Alesker, S.: Theory of valuations on manifolds IV. New properties of the multiplicative structure. To appear in GAFA seminar notes

  8. Alesker, S.: Valuations on manifolds: a survey. Preprint 2006.

  9. Alesker, S., Fu, J.H.G.: Theory of valuations on manifolds III. Multiplicative structure in the general case. To appear in Trans. Amer. Math. Soc.

  10. Bernig, A.: Valuations with Crofton formula and Finsler geometry. To appear in Adv. Math.

  11. Bernig, A., Bröcker, L.: Valuations on manifolds and Rumin cohomology. To appear in J. Differential Geom.

  12. Federer H. (1969). Geometric Measure Theory. Springer-Verlag, New York

    MATH  Google Scholar 

  13. Fu J.H.G. (2006). Structure of the unitary valuation algebra. J. Differential Geom. 72: 509–533

    MATH  MathSciNet  Google Scholar 

  14. Klain D. (2000). Even valuations on convex bodies. Trans. Amer. Math. Soc. 352: 71–93

    Article  MATH  MathSciNet  Google Scholar 

  15. Klain D. and Rota G.-C. (1997). Introduction to Geometric Probability. Lezione Lincee Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. McMullen P. (1977). Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc. 35: 113–135

    Article  MATH  MathSciNet  Google Scholar 

  17. Schneider R and Wieacker J.A. (1993). Integral geometry. In: Gruber, P.M. and Wills, J.M. (eds) Handbook of Convex Geometry vol B, pp. Amsterdam, North Holland

    Google Scholar 

  18. Whitney H. (1957). Geometric integration theory. Princeton University Press, princeton

    MATH  Google Scholar 

  19. Zähle M. (1986). Integral and current representation of Federer’s curvature measures. Arch. Math. 46: 557–567

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bernig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernig, A., Fu, J.H.G. Convolution of convex valuations. Geom Dedicata 123, 153–169 (2006). https://doi.org/10.1007/s10711-006-9115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9115-7

Keywords

Mathematics Subject Classifications (2000)

Navigation