Skip to main content
Log in

Configurations of flags in orbits of real forms

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we start the study of configurations of flags in closed orbits of real forms using mainly tools of GIT. As an application, using cross ratio coordinates for generic configurations, we identify boundary unipotent representations of the fundamental group of the figure eight knot complement into real forms of \({{\,\mathrm{PGL}\,}}(4,{\mathbb {C}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The quotient \(Y/{\mathfrak {S}}_r\) is described by the ring of invariants of binary quantics: it is the ring of polynomials in the variables \(a_0, \ldots , a_r\) that are invariant under the action of \({{\,\mathrm{SL}\,}}_2({\mathbb {C}})\) on \({\mathbb {C}}[a_0, \ldots , a_r]\) defined by \((g\cdot f)(x,y) = f(g^{-1}(x,y))\) where \(g \in {{\,\mathrm{SL}\,}}_2({\mathbb {C}})\) and \(f = \sum _i a_i x^{r-i} y^i\).

  2. Indeed, semi-stability only depends on the orbit under \(G({\mathbb {C}})\).

  3. To a quaternion \(q = a + bi + cj +dk \in {\mathbb {H}}\) one can associate the \(2 \times 2\) matrix with complex entries

    $$\begin{aligned} m(q) := \begin{pmatrix} a + bi &{}\quad c + di \\ -c +di &{}\quad a - bi \end{pmatrix}. \end{aligned}$$

    This induces an isomorphism of non-commutative \({\mathbb {C}}\)-algebras \(m :H \otimes _{\mathbb {R}}{\mathbb {C}}\rightarrow {{\,\mathrm{End}\,}}({\mathbb {C}}^2)\). A \(2 \times 2\) matrix with quaternionic coefficients,

    $$\begin{aligned} \begin{pmatrix} q_1 &{}\quad q_2 \\ q_3 &{}\quad q_4\end{pmatrix} \in {{\,\mathrm{GL}\,}}_2({\mathbb {H}}) \end{aligned}$$

    belongs to \({{\,\mathrm{SL}\,}}_2({\mathbb {H}})\) if and only if the associated \(4 \times 4\) matrix with complex coefficients,

    $$\begin{aligned} \begin{pmatrix} m(q_1) &{}\quad m(q_2) \\ m(q_3) &{}\quad m(q_4) \end{pmatrix}, \end{aligned}$$

    has determinant 1. If \(q_1 \ne 0\) this is equivalent to saying that the norm of \(q_1 q_4 - q_1 q_3 q_1^{-1} q_2\) is 1.

  4. That is, for every \(x \in U({\mathbb {C}})\), the closure of the orbit \(G({\mathbb {C}}) \cdot x\) is contained in \(U({\mathbb {C}})\).

  5. As already mentioned in the Introduction, a competing symbol in the literature is \(X /\!\!/ G\).

  6. That is, for every \(x \in U({\mathbb {R}})\) the closure of the orbit \(G({\mathbb {R}}) \cdot x\) is contained in \(U({\mathbb {R}})\).

  7. The space \(X({\mathbb {R}}) / G({\mathbb {R}})\) being Hausdorff is due to Luna (see [26, 7.3.3]). However the techniques employed by Richardon and Slodowy permit to give a proof of this which does not have recourse to Luna’s Slice Étale theorem (see [26, §  9]).

  8. Under this correspondence \(L = \iota ^*{\mathcal {O}}(1)\) and \(V = {{\,\mathrm{H}\,}}^0(X, L)^\vee \).

  9. Again in the literature it can be denoted \(X /\!\!/ G\) or \(X^{\text {ss}}/\!\!/ G\).

  10. This follows from the fact that the representations of G are completely reducible.

  11. One could argue by remarking that \(\frac{1}{d} A\) is a doubly stochastic matrix. The Birkhoff–von Neumann theorem therefore states that \(\frac{1}{d} A\) is a convex combination of permutation matrices. It follows that A can be written as a sum

    $$\begin{aligned} A = \sum _{\sigma \in {\mathfrak {S}}_r} \lambda _\sigma A_\sigma , \end{aligned}$$

    where for a permutation \(\sigma \in {\mathfrak {S}}_r\), \(A_\sigma \) is the associated permutation matrix and \(\lambda _\sigma \) is a non-negative real number. Nonetheless it is not clear that the coefficients \(\lambda _\sigma \) can be taken as integers (the decomposition is not unique).

  12. Given \(g \in P_1 \cap P_2\) and \(h \in {{\,\mathrm{rad}\,}}^u(P_1)\) one has to find the unique element \(h' \in {{\,\mathrm{rad}\,}}^u(P_1)\) such that \( gh \cdot W_2 = h' \cdot W_2\). Since g belongs to stabilizer of \(W_2\) by hypothesis, \( gh \cdot W_2 = ghg^{-1} \cdot W_2\). On the other hand \(ghg^{-1}\) belongs to \({{\,\mathrm{rad}\,}}^u(P_1)\) because the unipotent radical is a normal subgroup of \(P_1\). Thus \(h ' = ghg^{-1}\).

  13. This can be seen as follows. Write q as a matrix

    $$\begin{aligned} A= \begin{pmatrix} a &{}\quad - {\bar{b}} \\ b &{}\quad {\bar{a}}\end{pmatrix}, \end{aligned}$$

    with \(a, b \in {\mathbb {C}}\). The matrix A commutes with its adjoint, thus there is an orthonormal basis of \({\mathbb {C}}^2\) made of eigenvectors. In other words there exists \(U \in {{\,\mathrm{U}\,}}(2)\) and \(\lambda \in {\mathbb {C}}\) such that

    $$\begin{aligned} U A U^{-1} = \begin{pmatrix} \lambda &{}\quad 0 \\ 0 &{}\quad {\bar{\lambda }}\end{pmatrix}. \end{aligned}$$
  14. This is essentially the proof of (2) in the preceding Proposition.

References

  1. Atiyah, M., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bergeron, N., Falbel, E., Guilloux, A.: Tetrahedra of flags, volume and homology of \({{\rm SL}}(3)\). Geom. Topol. 18(4), 1911–1971 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bisi, C., Gentili, G.: Möbius transformations and the Poincaré distance in the quaternionic setting. Indiana Univ. Math. J. 58(6), 2729–2764 (2009)

    Article  MathSciNet  Google Scholar 

  4. Birkes, D.: Orbits of linear algebraic groups. Ann. Math. (2) 93, 459–475 (1971)

    Article  MathSciNet  Google Scholar 

  5. Borel, A.: Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126, 2nd edn. Springer, New York (1991)

  6. Ballas, S.A., Paupert, J., Will, P.: Rank 1 deformations of non-cocompact hyperbolic lattices. arXiv:1702.00508 (2017)

  7. Curve (computing and understanding representation varieties efficiently). http://curve.unhyperbolic.org

  8. Dimofte, T., Gabella, M., Goncharov, A.B.: K-decompositions and 3D gauge theories. J. High Energy Phys. 11, 151 (2016). front matter+144

    Article  MathSciNet  Google Scholar 

  9. Falbel, E.: A spherical CR structure on the complement of the figure eight knot with discrete holonomy. J. Differ. Geom. 79(1), 69–110 (2008)

    Article  MathSciNet  Google Scholar 

  10. Falbel, E., Platis, I.D.: The PU(2,1) Configuration space of four points in S3 and the cross-ratio variety. Math. Ann. 340(4), 935–962 (2008)

    Article  MathSciNet  Google Scholar 

  11. Fock, V.V., Goncharov, A.B.: Moduli spaces of convex projective structures on surfaces. Adv. Math. 208(1), 249–273 (2007)

    Article  MathSciNet  Google Scholar 

  12. Falbel, E., Koseleff, P.-V., Rouillier, F.: Representations of fundamental groups of 3-manifolds into \(PGL(3,{\mathbb{C}})\): exact computations in low complexity. Geom. Dedicata 177, 229–255 (2015)

    Article  MathSciNet  Google Scholar 

  13. Falbel, E., Santos Thebaldi, R.: A flag structure on a cusped hyperbolic 3-manifold. Pac. J. Math. 278(1), 51–78 (2015)

    Article  MathSciNet  Google Scholar 

  14. Garoufalidis, S., Goerner, M., Zickert, C.K.: Gluing equations for \(PGL(n,{\mathbb{C}})\)-representations of 3-manifolds. Algebr. Geom. Topol. 15(1), 565–622 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gwynne, E., Libine, M.: On a quaternionic analogue of the cross-ratio. Adv. Appl. Clifford Algebr. 22(4), 1041–1053 (2012)

    Article  MathSciNet  Google Scholar 

  16. Howard, B., Millson, J., Snowden, A., Vakil, R.: The ideal of relations for the ring of invariants of \(n\) points on the line. J. Eur. Math. Soc. (JEMS) 14(1), 1–60 (2012)

    Article  MathSciNet  Google Scholar 

  17. Halmos, P.R., Vaughan, H.E.: The marriage problem. Am. J. Math. 72, 214–215 (1950)

    Article  MathSciNet  Google Scholar 

  18. Kempf, G.R.: Instability in invariant theory. Ann. Math. (2) 108(2), 299–316 (1978)

    Article  MathSciNet  Google Scholar 

  19. Luna, D.: Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, pp. 81–105. Bull. Soc. Math. France, Paris, Mémoire 33 (1973)

  20. Luna, D.: Sur certaines opérations différentiables des groupes de Lie. Am. J. Math. 97, 172–181 (1975)

    Article  Google Scholar 

  21. Luna, D.: Fonctions différentiables invariantes sous l’opération d’un groupe réductif. Ann. Inst. Fourier (Grenoble) 26(1, ix), 33–49 (1976)

    Article  MathSciNet  Google Scholar 

  22. Moret-Bailly, L.: Un théorème de l’application ouverte sur les corps valués algébriquement clos. Math. Scand. 111(2), 161–168 (2012)

    Article  MathSciNet  Google Scholar 

  23. Mumford, D., Suominen, K.: Introduction to the theory of moduli. In: Algebraic Geometry. Oslo 1970 (Proceedings of Fifth Nordic Summer-School in Mathematics), pp. 171–222. Wolters-Noordhoff, Groningen (1972)

  24. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34. Springer, Berlin (1994)

  25. Rousseau, G.: Instabilité dans les espaces vectoriels. In: Algebraic Surfaces (Orsay, 1976–78), Lecture Notes in Math., vol. 868, pp. 263–276. Springer, Berlin (1981)

  26. Richardson, R.W., Slodowy, P.J.: Minimum vectors for real reductive algebraic groups. J. Lond. Math. Soc. (2) 42(3), 409–429 (1990)

    Article  MathSciNet  Google Scholar 

  27. Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6, 1–42 (1955–1956)

  28. Serre, J.-P.: Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5. Springer, Berlin (1994)

  29. Wolf, J.A.: The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components. Bull. Am. Math. Soc. 75, 1121–1237 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Claudio Gorodski, Antonin Guilloux, Greg Kuperberg and Maxime Wolff for several discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisha Falbel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The third author is partially supported by INDAM-GNSAGA, by the 2014 SIR Grant Analytic Aspects in Complex and Hypercomplex Geometry and by Finanziamento Premiale FOE 2014 Splines for accUrate NumeRics: adaptIve models for Simulation Environments of the Italian Ministry of Education (MIUR). Part of this project has been developed while she was an INdAM-COFUND fellow at IMJ-PRG Paris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falbel, E., Maculan, M. & Sarfatti, G. Configurations of flags in orbits of real forms. Geom Dedicata 207, 95–156 (2020). https://doi.org/10.1007/s10711-019-00489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00489-3

Keywords

Mathematics Subject Classification

Navigation