Skip to main content
Log in

Coupled Process Models as a Tool for Analysing Hydrothermal Systems

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Hydrothermal systems are characterised by complex interactions between heat transfer, fluid flow, deformation, species transport and chemical reactions. Numerical models can provide quantitatively constrained information in regions where acquisition of new data is difficult or expensive thus providing a means for reducing risks, costs, and effort during targeting, production, and management of resources linked to hydrothermal systems. Here we show how numerical simulations of hydrothermal processes can be used to better understand coupled reactive transport in modern geothermal systems and in ancient hydrothermal ore deposits. We give examples based on the Enhanced Geothermal System at Soultz-sous-Forêts in France, hydrothermal mineralisation at Mount Isa in Australia, and the geothermal resource at Hamburg-Allermöhe in Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alt-Epping P (2004) Reactive transport simulation of processes in hydrothermal systems and their implications for the formation of ore deposits. Geochim Cosmochim Acta 68(11):A179

    Google Scholar 

  • Alt-Epping P, Diamond LW (2006) Reactive transport simulations of lateral hydrothermal circulation in oceanic hydrothermal systems. Geochim Cosmochim Acta 70(18):A11. doi:10.1016/j.gca.2006.06.036

    Article  Google Scholar 

  • Alt-Epping P, Diamond LW (2007) Interaction of fluid flow, heat and mass transport, and chemical reactions in oceanic hydrothermal systems: new insights from fully coupled reactive transport simulations. Geochim Cosmochim Acta 71(15):A17

    Google Scholar 

  • Appold MS, Garven G (2000) Reactive flow models of ore formation in the Southeast Missouri district. Econ Geol 95(8):1605–1626. doi:10.2113/95.8.1605

    Article  Google Scholar 

  • Auradou H, Drazer G, Boschan A, Hulin J-P, Koplik J (2006) Flow channeling in a single fracture induced by shear displacement. Geothermics 35:576–588. doi:10.1016/j.geothermics.2006.11.004

    Article  Google Scholar 

  • Baermann A, Kröger J, Taugs R, Wüstenhagen K, Zarth M (2000) Anhydrite cement in Rhaetian sandstones in southeastern Hamburg: morphologie and structure. Z Angew Geol 46:138–144 in German

    Google Scholar 

  • Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Tectonic Atlas of Northwest Germany and the German North Sea sector—structures, structural development, palaeogeography. Geologisches Jahrbuch, Reihe A, Heft 153

  • Bartels J, Kühn M, Schneider W, Clauser C, Pape H, Meyn V, Lajczak I (2002) Core flooding laboratory experiment validates numerical simulation of induced permeability change in reservoir sandstone. Geophys Res Lett 29(9), doi: 10.1029/2002GL014901

  • Barzel R (1992) Physically-based modeling for computer graphics: a structured approach. Academic Press Inc, New York

    Google Scholar 

  • Bataillé A, Genthon P, Rabinowicz M, Fritz B (2006) Modeling the coupling between free and forced convection in a vertical permeable slot: implications for the heat production of an enhanced geothermal system. Geothermics 35:654–682. doi:10.1016/j.geothermics.2006.11.008

    Article  Google Scholar 

  • Baujard C, Bruel D (2006) Numerical study of the impact of fluid density on the pressure distribution and stimulated volume in the soultz hdr reservoir. Geothermics 35:607–621. doi:10.1016/j.geothermics.2006.10.004

    Article  Google Scholar 

  • Baujard C, Kohl T, Mégel T, Rosener M, Bruel D, Portier S, Stamatakis E, Rachez X, Sulzbacher H, Kühn M, Rabinowicz M (2007) Modelling of the soultz reservoir: different approaches and possible benefits, in EHDRA Scientific Meeting Soultz-sous-Forêts: 28 and 29, June 2007

  • Bell TH, Perkins WG, Swager CP (1988) Structural controls on development and localization of syntectonic copper mineralization at Mount Isa, Queensland. Econ Geol 83:69–85

    Article  Google Scholar 

  • Blount CW, Dickson FW (1969) The solubility of anhydrite (CaSO4) in NaCl–H2O from 100 to 450°C and 1 to 1000 bars. Geochim Cosmochim Acta 33:227–245. doi:10.1016/0016-7037(69)90140-9

    Article  Google Scholar 

  • Blumenthal M, Kühn M, Pape H, Rath V, Clauser C (2008) Numerical modelling of hydraulic and thermal processes in the deep heat reservoir of the EGS test site Soultz-sous-Forêts, France. Geophys Res Abstr 10:EGU2008–A-05053

    Google Scholar 

  • Bock E (1961) On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25°C, 30°C, 40°C, and 50°C. Can J Chem 39:1746–1751. doi:10.1139/v61-228

    Article  Google Scholar 

  • Cathles LM (1981) Fluid flow and genesis of hydrothermal ore deposits, Society of Economic Geologists 75th Anniversary, vol 424–457

  • Clauser C (2003) Numerical simulation of reactive flow in hot aquifers—SHEMAT and processing SHEMAT. Springer, Heidelberg

    Google Scholar 

  • Clauser C (2006) Geothermal energy. In: Heinloth K (ed) Landolt-Börnstein, Group VIII: “Advanced Materials and Technologies”. “Energy Technologies”, Subvol. C: “Renewable Energies”, vol 3. Springer, Heidelberg, pp 480–595

    Google Scholar 

  • Clauser C (2009) Heat transport processes in the Earth’s crust. Surv Geophys. doi:10.1007/s10712-009-9058-2

    Google Scholar 

  • Cleverley JS (2007) Large scale finite element reactive transport modelling as a tool to aid understanding and prediction in mineral systems. In: Andrew Cao (ed) ‘Digging Deeper’: Proceedings of the Ninth SGA Biennial Meeting’. Dublin, pp 1439–1442

  • Elmer FL, Cleverley JS, Potma W (2007) Reactive transport modelling of roll front (sandstone) uranium deposits. In: Andrew Cao (ed) ‘Digging Deeper’: Proceedings of the Ninth SGA Biennial Meeting’. Dublin, pp 1157–1160

  • England WA, Mackenzie AS, Mann DM, Quigley TM (1987) The movement and entrapment of petroleum fluids in the subsurface. J Geol Soc London 144:327–347. doi:10.1144/gsjgs.144.2.0327

    Article  Google Scholar 

  • Garven G, Freeze RA (1984) Theoretical-analysis of the role of groundwater-flow in the genesis of stratabound ore-deposits. 1. Mathematical and numerical-model. Am J Sci 284(10):1085–1124

    Google Scholar 

  • Garven G, Raffensperger JP (1997) Hydrogeology and geochemistry of ore genesis in sedimentary basins. Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 125–189

    Google Scholar 

  • Garven G, Ge S, Person MA, Sverjensky DA (1993) Genesis of stratabound ore-deposits in the midcontinent basins of North-America. 1. The role of regional groundwater-flow. Am J Sci 293(6):497–568

    Google Scholar 

  • Garven G, Appold MS, Toptygina VI, Hazlett TJ (1999) Hydrogeologic modeling of the genesis of carbonate-hosted lead–zinc ores. Hydrogeol J 7(1):108–126. doi:10.1007/s100400050183

    Article  Google Scholar 

  • Garven G, Raffensperger JP, Dumoulin JA, Bradley DC, Young LE, Kelley KD, Leach DL (2003) Coupled heat and fluid flow modeling of the Carboniferous Kuna Basin, Alaska; implications for the genesis of the Red Dog Pb–Zn–Ag–Ba ore district. J Geochem Explor 78–79:215–219. doi:10.1016/S0375-6742(03)00109-2

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeld KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974. doi:10.1029/92WR00607

    Article  Google Scholar 

  • Genter A, Guillou-Frottier L, Feybesse J, Nicol N, Dezayes C, Schwartz S (2003) Typology of potential hot fractured rock resources in Europe. Geothermics 32:701–710. doi:10.1016/S0375-6505(03)00065-8

    Article  Google Scholar 

  • Gérard A, Genter A, Kohl T, Lutz P, Rose P, Rummel F (2006) The deep EGS (enhanced geothermal system) project at Soultz-sous-forˆets (Alsace, France). Geothermics 35:473–483. doi:10.1016/j.geothermics.2006.12.001

    Article  Google Scholar 

  • Gessner K (2009) Coupled models of brittle-plastic deformation and fluid flow: approaches, methods, and application to Mesoproterozoic mineralisation at Mount Isa, Australia. Surv Geophys. doi:10.1007/s10712-009-9062-6

  • Gessner K, Jones PA, Wilde AR, Kühn M (2006) Significance of strain localization and fracturing in relation to hydrothermal mineralization at Mount Isa, Australia. J Geochem Explor 89:129–132. doi:10.1016/j.gexplo.2005.11.048

    Article  Google Scholar 

  • Gow PA, Upton P, Zhao C, Hill KC (2002) Copper-gold mineralisation in New Guinea; numerical modelling of collision, fluid flow and intrusion-related hydrothermal systems. Aust J Earth Sci 49:753–771

    Article  Google Scholar 

  • Heinrich CA, Bain JHC, Mernagh TP, Wyborn LAI, Andrew AS, Waring CL (1995) Fluid and mass transfer during metabasalt alteration and copper mineralization at Mount Isa, Australia. Econ Geol 90:705–730

    Article  Google Scholar 

  • Hill MC, Tiedemann CR (2006) Effective model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, New York

    Google Scholar 

  • Hronsky JMA, Groves DI (2008) Science of targeting: definition, strategies, targeting and performance measurement. Aust J Earth Sci 55(1):3–12. doi:10.1080/08120090701581356

    Article  Google Scholar 

  • Ingebritsen SE, Sanford WE (1998) Groundwater in geologic processes. Cambridge University Press, Cambridge

    Google Scholar 

  • Itasca (2003) FLAC3D (fast lagrangian analysis of continua in three dimensions). Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Jiang Z, Oliver NHS, Barr TD, Power WL, Ord A (1997) Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China. Econ Geol 92(2):228–247

    Article  Google Scholar 

  • Kendrick MA, Duncan R, Phillips D (2006) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa, Australia. Chem Geol 235(3–4):325–351. doi:10.1016/j.chemgeo.2006.08.002

    Article  Google Scholar 

  • Kühn M (2003) Preferential flow path development in an anhydrite cemented sandstone. In: Clauser C (ed) Numerical simulation of reactive flow in hot aquifers—SHEMAT and processing SHEMAT. Springer, Heidelberg, pp 231–242

    Google Scholar 

  • Kühn M (2004) Reactive flow modeling of hydrothermal systems. Springer, Heidelberg

    Google Scholar 

  • Kühn M (2009) Modelling feed-back of chemical reactions on flow fields in hydrothermal systems. Surv Geophys. doi:10.1007/s10712-009-9055-5

  • Kühn M, Gessner K (2006a) Reactive transport model of silicification at the Mount Isa copper deposit, Australia. J Geochem Explor 89:195–198. doi:10.1016/j.gexplo.2005.11.076

    Article  Google Scholar 

  • Kühn M, Gessner K (2006b) Reactive transport model of silicification at the Mount Isa copper deposit, Australia. J Geochem Explor 89(1–3):195–198. doi:10.1016/j.gexplo.2005.11.076

    Article  Google Scholar 

  • Kühn M, Gessner K (2009a) Testing hypotheses for the Mount Isa copper mineralization with numerical simulations. Surv Geophys. doi:10.1007/s10712-009-9064-4

    Google Scholar 

  • Kühn M, Gessner K (2009b) Coupled process models of fluid flow and heat transfer in hydrothermal systems in three dimensions. Surv Geophys. doi:10.1007/s10712-009-9060-8

    Google Scholar 

  • Kühn M, Günther A (2007) 4-D hydrothermal reactive transport model based on the regional geological evolution of Allermöhe (Germany). Geofluids 7:301–312. doi:10.1111/j.1468-8123.2007.00182.x

    Article  Google Scholar 

  • Kühn M, Stöfen H (2001) Reaction front fingering in anhydrite cemented sandstone. In: Simmons S, Dunstall MG, Morgan OE (eds) Proceedings 23rd New Zealand Geother-mal Workshop 2001, November 7–9, Auckland University, New Zealand, pp 207–212

  • Kühn M, Bartels J, Pape H, Schneider W, Clauser C (2002) Modeling chemical brine–rock interaction in geothermal reservoirs. In: Stober I, Bucher K (eds) Water–rock interaction. Kluwer Academic Publishers, Dordrecht, pp 147–169

    Google Scholar 

  • Kühn M, Dobert F, Gessner K (2006) Numerical investigation of the effect of heterogeneous permeability distributions on free convection in the hydrothermal system at Mount Isa, Australia. Earth Planet Sci Lett 244:655–671. doi:10.1016/j.epsl.2006.02.041

    Article  Google Scholar 

  • Lapwood ER (1948) Convection of a fluid in a porous media. Proc Camb Philos Soc 44:508–521. doi:10.1017/S030500410002452X

    Article  Google Scholar 

  • Lenz G, Horn H, Kellner T (1997) Final report on geology and drilling of the bore Hamburg Allermöhe 1. Geothermie Neubrandenburg GmbH (in German)

  • McLellan JG, Oliver NHS, Schaubs PM (2004) Fluid flow in extensional environments; numerical modelling with an application to Hamersley iron ores. J Struct Geol 26(6–7):1157–1171. doi:10.1016/j.jsg.2003.11.015

    Article  Google Scholar 

  • Oliver NHS, Ord A, Valenta RK, Upton P (2001) Deformation, fluid flow and ore genesis in heterogeneous rocks with examples and numerical models from the Mount Isa District, Australia. In: Richards JP, Tosdal RM (eds) Reviews in economic geology. Society of Economic Geologists, Inc., pp 51–74

  • Oliver NHS, McLellan JG, Hobbs BE, Cleverley JS, Ord A, Feltrin L (2006) 100th anniversary special paper: numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Econ Geol 101(1):1–31. doi:10.2113/101.1.1

    Article  Google Scholar 

  • Ord A, Oliver NHS (1997) Mechanical controls on fluid flow during regional metamorphism; some numerical models. J Metamorph Geol 15:345–359. doi:10.1111/j.1525-1314.1997.00030.x

    Article  Google Scholar 

  • Ord A, Hobbs BE, Zhang Y, Broadbent GC, Brown M, Willetts G, Sorjonen-Ward P, Walshe JL, Zhao C (2002) Geodynamic modelling of the century deposit, Mt Isa province, Queensland. Aust J Earth Sci 49(6):1011–1039. doi:10.1046/j.1440-0952.2002.00968.x

    Article  Google Scholar 

  • Ord A, Hobbs BE, Hornby P, Cleverley JS, Barnicoat AC, Murphy FC (2007) Coupled chemical-fluid flow modelling of the Irish Carboniferous Basin. In: Andrew C (ed) ‘Digging Deeper’: Proceedings of the Ninth SGA Biennial Meeting’. Dublin, pp 1423–1426

  • Perkins WG (1984) Mount Isa silica dolomite and copper orebodies; the result of a syntectonic hydrothermal alteration system. Econ Geol 79:601–637

    Article  Google Scholar 

  • Perkins WG (1997) Mount Isa lead–zinc orebodies; replacement lodes in a zoned syndeformational copper–lead–zinc system? Ore Geol Rev 12:61–111. doi:10.1016/S0169-1368(97)00004-8

    Article  Google Scholar 

  • Potma W, Roberts PA, Schaubs PM, Sheldon HA, Zhang Y, Hobbs BE, Ord A (2008) Predictive targeting in Australian orogenic-gold systems at the deposit to district scale using numerical modelling. Aust J Earth Sci 55(1):101–122. doi:10.1080/08120090701673328

    Article  Google Scholar 

  • Pribnow D (2003) Rhine graben cross section. In: Clauser C (ed) Numerical simulations of reactive flow in hot aquifers. Springer, Heidelberg, pp 281–290

    Google Scholar 

  • Price GP, Stoker P (2002) Australian Geodynamics Cooperative Research Centre’s integrated research program delivers a new minerals exploration strategy for industry. Aust J Earth Sci 49:595–600. doi:10.1046/j.1440-0952.2002.00947.x

    Article  Google Scholar 

  • Raffensperger JP, Garven G (1995a) The formation of unconformity-type uranium ore-deposits. 1. Coupled groundwater-flow and heat-transport modeling. Am J Sci 295:581–636

    Google Scholar 

  • Raffensperger JP, Garven G (1995b) The formation of unconformity-type uranium ore-deposits. 2. Coupled hydrochemical modeling. Am J Sci 295:639–696

    Google Scholar 

  • Rath V, Wolf A, Bücker M (2006) Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples. Geophys J Int 167:453–466. doi:10.1111/j.1365-246X.2006.03074.x

    Article  Google Scholar 

  • Robinson JA, Wilson CJL, Rawling TJ (2006) Numerical modelling of an evolving gold-lode system: structural and lithological controls on ore-shoot formation in the Magdala goldmine, western Victoria. Aust J Earth Sci 53(5):799–823. doi:10.1080/08120090600827462

    Article  Google Scholar 

  • Rosener M, Geraud Y, Fritz B (2006) Porosity networks and physical properties of fault zones: implication for fluid, mass and thermal transfer. In: Proceedings of the EHDRA Scientific Conference, 15–16 June 2006, Soultz-sous-Forêts, France

  • Sanjuan B, Pinault J, Rose P, Gérard A, Brach M, Braibant G, Crouzet C, Foucher J, Gautier A, Touzelet S (2006a) Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005. Geothermics 35(5–6):622–653. doi:10.1016/j.geothermics.2006.09.007

    Article  Google Scholar 

  • Sanjuan B, Pinault JL, Rose P, Gérard A, Brach M, Braibant G, Crouzet C, Foucher JC, Gautier A, Touzelet S (2006b) Geochemical fluid characteristics and main achievements about tracer tests at Soultz-sous-Forêts (France). BRGM/RP-54776-FR

  • Schardt C, Yang J, Large R (2005) Numerical heat and fluid-flow modeling of the panorama volcanic-hosted massive sulfide district, Western Australia. Econ Geol 100:547–566. doi:10.2113/100.3.547

    Article  Google Scholar 

  • Schardt C, Large R, Yang J (2006) Controls on heat flow, fluid migration, and massive sulfide formation of an off-axis hydrothermal system–the Lau basin perspective. Am J Sci 306:103–134. doi:10.2475/ajs.306.2.103

    Article  Google Scholar 

  • Schaubs PM, Wilson CJL (2002) The relative roles of folding and faulting in controlling gold mineralization along the Deborah anticline, Bendigo, Victoria, Australia. Econ Geol 97:351–370. doi:10.2113/97.2.351

    Article  Google Scholar 

  • Schaubs PM, Zhao C (2002) Numerical models of gold-deposit formation in the Bendigo-Ballarat Zone, Victoria. Aust J Earth Sci 49:1077–1096. doi:10.1046/j.1440-0952.2002.00964.x

    Article  Google Scholar 

  • Schaubs P, Rawling T, Dugdale J, Wilson C (2006) Using numerical deformation-fluid-flow simulations to understand and target gold mineralisation around basalt domes in the Stawell Zone, Central Victoria, Australia. J Geochem Explor 89(1–3):351–354. doi:10.1016/j.gexplo.2005.11.060

    Article  Google Scholar 

  • Schellschmidt R, Clauser C (1996) The thermal regime of the Upper Rhine graben and the anomaly at Soultz. Z Angew Geol 42:40–46

    Google Scholar 

  • Sorjonen-Ward P, Zhang Y, Zhao C (2002) Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton, Western Australia. Aust J Earth Sci 49(6):935–964. doi:10.1046/j.1440-0952.2002.00969.x

    Article  Google Scholar 

  • Swager CP (1985) Syndeformational carbonate-replacement model for the copper mineralization at Mount Isa, Northwest Queensland; a microstructural study. Econ Geol 80:107–125

    Article  Google Scholar 

  • Tarantola A (2004) Inverse problem theory. Methods for model parameter estimation. SIAM, Philadelphia

    Google Scholar 

  • Tarantola A, Valette B (1982a) Generalized nonlinear inverse problems solved using the least-squares criterion. Rev Geophys Space Phys 20:219–232. doi:10.1029/RG020i002p00219

    Article  Google Scholar 

  • Tarantola A, Valette B (1982b) Inverse problems = quest for information. J Geophys 50:159–170

    Google Scholar 

  • Tischner T, Pfender M, Teza D (2006) Hot Dry Rock Projekt Soultz: Erste Phase der Erstellung einer wissenschaftlichen Pilotanlage. Abschlussbericht zum Vorhaben 0327097, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 1.4.2001-31.3.2005

  • Upton P, Begbie M, Craw D (2007) Numerical modelling of mechanical controls on coeval steep and shallow dipping auriferous quartz vein formation in a thrust zone, Macraes mine, New Zealand. Miner Depos. doi:10.1007/s00126-00007-00148-00120

  • Vos IMA, Potma W, Bierlein FP, Sheldon HA (2007) Numerical modelling of the western Hodgkinson Province, northeast Queensland: implications for gold mineralisation. Aust J Earth Sci 54(1):27–47. doi:10.1080/08120090600981434

    Article  Google Scholar 

  • Wagner R, Kühn M, Meyn V, Pape H, Vath U, Clauser C (2005) Numerical simulation of pore space clogging in geothermal reservoirs by precipitation of anhydrite. Int J Rock Mech Min Sci 42:1070–1081. doi:10.1016/j.ijrmms.2005.05.008

    Article  Google Scholar 

  • Wilde AR, Jones PA, Gessner K, Aillères L, Gregory MJ, Duncan RJ (2006) A geochemical process model for the Mount Isa copper orebodies. Econ Geol 101:1547–1567. doi:10.2113/gsecongeo.101.8.1547

    Article  Google Scholar 

  • Wyborn LAI, Heinrich CA, Jaques AL (1994) Australian proterozoic mineral systems: essential ingredients and mappable criteria. The AusIMM Annual Conference. Darwin, pp 109–115

  • Yang J (2006) Full 3-D numerical simulation of hydrothermal fluid flow in faulted sedimentary basins: example of the McArthur Basin, Northern Australia. J Geochem Explor 89:440–444. doi:10.1016/j.gexplo.2005.11.080

    Article  Google Scholar 

  • Yang J, Bull S, Large RR (2004a) Numerical investigation of salinity in controlling ore-forming fluid transport in sedimentary basins: example of the HYC deposit, Northern Australia. Miner Depos 39:622–631. doi:10.1007/s00126-004-0430-3

    Article  Google Scholar 

  • Yang J, Large RR, Bull SW (2004b) Factors controlling free thermal convection in faults in sedimentary basins: implications for the formation of zinc–lead mineral deposits. Geofluids 4:237–247. doi:10.1111/j.1468-8123.2004.00084.x

    Article  Google Scholar 

  • Yardley BWD, Baumgartner LP (2007) Fluid processes in deep crustal fault zones. In: Handy MR, Hirth G, Hovius N (eds) Tectonic faults: agents of change on a dynamic Earth. MIT Press, Cambridge, pp 295–318

    Google Scholar 

  • Zhang Y, Sorjonen-Ward P, Ord A (2006a) Modelling fluid transport associated with mineralization and deformation in the Outokumpu Cu–Zn–Co deposit, Finland. J Geochem Explor 89(1–3):465–469. doi:10.1016/j.gexplo.2005.11.035

    Article  Google Scholar 

  • Zhang Y, Sorjonen-Ward P, Ord A, Southgate PN (2006b) Fluid flow during deformation associated with structural closure of the Isa superbasin at 1575 Ma in the central and northern Lawn Hill platform, northern Australia. Econ Geol 101(6):1293–1312. doi:10.2113/gsecongeo.101.6.1293

    Article  Google Scholar 

  • Zhang YH, Lin G, Roberts P, Ord A (2007) Numerical modelling of deformation and fluid flow in the Shuikoushan district, Hunan Province, South China. Ore Geol Rev 31(1–4):261–278. doi:10.1016/j.oregeorev.2005.03.013

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Peng S, Muhlhaus HB, Liu L (2004) Theoretical investigation of convective instability in inclined and fluid-saturated three-dimensional fault zones. Tectonophysics 387(1–4):47–64. doi:10.1016/j.tecto.2004.06.007

    Article  Google Scholar 

Download references

Acknowledgments

We thank Xstrata Copper Australia, who funded the Mt Isa Copper modelling through the Predictive Mineral Discovery Cooperative Research Centre (pmd*CRC) and provided generous logistical support. A. R. Wilde and P. A. Jones are thanked for fruitful discussions. Research on the Allermöhe site was supported by the German Federal Ministry for Economic Affairs (BMWi), grant 032 70 95. We thank Peter Sorjonen-Ward, Lawrence Cathles, and Ingo Sass for thorough reviews of the manuscript, and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gessner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gessner, K., Kühn, M., Rath, V. et al. Coupled Process Models as a Tool for Analysing Hydrothermal Systems. Surv Geophys 30, 133–162 (2009). https://doi.org/10.1007/s10712-009-9067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-009-9067-1

Keywords

Navigation