Skip to main content

Advertisement

Log in

Density Perturbations in the Upper Atmosphere Caused by the Dissipation of Solar Wind Energy

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The upper atmosphere constitutes the outer region of the terrestrial gas envelope above about 100 km altitude. The energy budget of this outer gas layer is partly controlled by the dissipation of solar wind energy. Since this energy input is largely irregular, the resulting density changes are considered as perturbations. The properties and physics of such density perturbations are reviewed here. Besides being an important link in the complex chain of solar-terrestrial relations, such disturbances are also of practical interest because they affect the orbits of satellites and space stations and are responsible for ionospheric disturbance effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  • Aikin AC, Hedin AE, Kendig DJ, Drake S (1993) Thermospheric molecular oxygen measurements using the ultraviolet spectrometer on the solar maximum mission spacecraft. J Geophys Res 98:17607–17613

    Google Scholar 

  • Aikio AT, Selkälä A (2009) Statistical properties of Joule heating rate, electric field and conductances at high latitudes. Ann Geophys 27:2661–2673

    Google Scholar 

  • Allan RR (1974) Response of dayside thermosphere to an intense geomagnetic storm. Nature 247:23–25

    Google Scholar 

  • Allan RR, Cook GE (1974) Thermospheric densities during an intense magnetic storm, from the LOGACS experiment. J Atmos Terr Phys 36:1739–1752

    Google Scholar 

  • Allen JH, Kroehl HW (1975) Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J Geophys Res 80:3667–3677

    Google Scholar 

  • Almár I, Illés-Almár E (2004) A proposal to improve the CIRA ’86 model in the equatorial region: the ddMSIS model. Adv Space Res 34(8):1768–1772

    Google Scholar 

  • Almár I, Illés-Almár E, Horváth A, Kolláth Z, Bisikalo DV, Kasimenko TV (1992) Improvement of the MSIS 86 and DTM thermospheric models by investigating the geomagnetic effect. Adv Space Res 12(6):313–316

    Google Scholar 

  • Anderson W (1928) Über die Hypothese von H. Peterson daß die höchsten Atmosphärenschichten durch β-Strahlen erwärmt werden. Physik Zeitschr 29:232–233

    Google Scholar 

  • Anderson AD (1973) The relation between low-latitude neutral density variations near 400 km and magnetic activity indices. Planet Space Sci 21:2049–2060

    Google Scholar 

  • Appleton EV, Ingram LJ (1935) Magnetic storms and upper-atmospheric ionisation. Nature 136:548–549

    Google Scholar 

  • Balthazor RL, Moffett RJ (1997) A study of atmospheric gravity waves and travelling ionospheric disturbances at equatorial latitudes. Ann Geophys 15:1048–1056

    Google Scholar 

  • Banks PM (1977) Observations of joule and particle heating in the auroral zone. J Atmos Terr Phys 39:179–193

    Google Scholar 

  • Banks PM (1980) Energy sources of the high latitude upper atmosphere. In: Deehr CS, Holtet JA (eds) Exploration of the polar upper atmosphere. Reidel, Dordrecht, pp 113–127

    Google Scholar 

  • Banks PM, Nagy AF (1974) Cyclonic disturbances and their consequences in the thermosphere. Geophys Res Lett 1:305–308

    Google Scholar 

  • Bartels J (1928) Die höchsten Atmosphärenschichten. In: Ergebnisse der exakten Naturwissenschaften, vol 7. Springer, Berlin, pp 114–157

  • Barth CA, Bailey SM (2004) Comparison of a thermospheric photochemical model with student nitric oxide explorer (SNOE) observations of nitric oxide. J Geophys Res 109:A03304. doi:10.1029/2003JA010227

    Google Scholar 

  • Barth CA, Mankoff KD, Bailey SM, Solomon SC (2003) Global observations of nitric oxide in the thermosphere. J Geophys Res 108:A1, 1027. doi:10.1029/2002JA009458

    Google Scholar 

  • Barth CA, Lu G, Roble RG (2009) Joule heating and nitric oxide in the thermosphere. J Geophys Res 114:A05301. doi:10.1029/2008JA013765

    Google Scholar 

  • Bates DR (1960) The auroral spectrum and its interpretation. In: Ratcliffe JA (eds) Physics of the upper atmosphere. Academic Press, New York, pp 297–353

    Google Scholar 

  • Bates HF (1974a) Atmospheric expansion from joule heating. Planet Space Sci 22:925–937

    Google Scholar 

  • Bates HF (1974b) Thermospheric changes shortly after the onset of daytime joule heating. Planet Space Sci 22:1625–1636

    Google Scholar 

  • Bencze P, Almár I, Illés-Almár E (1993) Ring current heating of the low latitude thermosphere connected with geomagnetic disturbances. Adv Space Res 13(1):303–306

    Google Scholar 

  • Berger C, Barlier F, Ill M (1988) Diurnal variations of the response of the equatorial thermosphere to geomagnetic activity. Phys Scr 37:427–431

    Google Scholar 

  • Bhatnagar VP, Tan A, Ramachandaran R (2006) On the response of the exospheric temperature to the auroral heating impulse during geomagnetic disturbances. J Atmos Solar Terr Phys 68:1237–1244

    Google Scholar 

  • Blum P, Prölss GW (1987) Changes in thermospheric density caused by turbulence variations. Adv Space Res 7(10):247–254

    Google Scholar 

  • Blum PW, Wulf-Mathies C, Trinks H (1975) Interpretation of local thermospheric disturbances of composition observed by ESRO-4 in the polar region. Space Res 15:209–214

    Google Scholar 

  • Bowman BR, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ (2008) A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: Proceedings of AIAA/AAS astrodynamics specialist conference, 18–21 Aug 2008, Honolulu, AIAA2008-6438:1–19

  • Brekke A (1976) Electric fields, Joule and particle heating in the high latitude thermosphere. J Atmos Terr Phys 38:887–895

    Google Scholar 

  • Brinkman DG, Walterscheid RL, Richmond AD, Venkateswaran SV (1992) Wave-mean flow interaction in the storm-time thermosphere: a two-dimensional model simulation. J Atmos Sci 49:660–680

    Google Scholar 

  • Bruinsma SL, Forbes JM (2009) Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations. Adv Space Res 43:369–376

    Google Scholar 

  • Bruinsma SL, Forbes JM (2010) Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data. J Atmos Solar Terr Phys 72:1057–1066

    Google Scholar 

  • Bruinsma S, Thuillier G, Barlier F (2003) The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J Atmos Solar Terr Phys 65:1053–1070

    Google Scholar 

  • Burke WJ et al (2008) Storm time energy budgets of the global thermosphere. In: Kintner PM (eds) Midlatitude ionospheric dynamics and disturbances. AGU monograph 181, American Geophysical Union, Washington, pp 235–245

    Google Scholar 

  • Burke WJ, Huang CY, Marcos FA, Wise JO (2007) Interplanetary control of thermospheric densities during large magnetic storms. J Atmos Solar Terr Phys 69:279–287

    Google Scholar 

  • Burke WJ, Gentile LC, Hagan MP (2010a) Thermospheric heating by high-speed streams in the solar wind. J Geophys Res 115:A06318. doi:10.1029/2009JA014585

    Google Scholar 

  • Burke WJ, Huang CY, Weimer DR, Wise JO, Wilson GR, Lin CS, Marcos FA (2010b) Energy and power requirements of the global thermosphere during the magnetic storm of November 10, 2004. J Atmos Solar Terr Phys 72:309–318

    Google Scholar 

  • Burns AG, Killeen TL, Roble RG (1989) Processes responsible for the compositional structure of the thermosphere. J Geophys Res 94:3670–3686

    Google Scholar 

  • Burns AG, Killeen TL, Roble RG (1991) A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm. J Geophys Res 96:14153–14167

    Google Scholar 

  • Burns AG, Killeen TL, Roble RG (1992) Thermospheric heating away from the auroral oval during geomagnetic storms. Can J Phys 70:544–552

    Google Scholar 

  • Burns AG, Wang W, Killeen TL, Solomon SC (2004a) A “tongue” of neutral composition. J Atmos Solar Terr Phys 66:1457–1468

    Google Scholar 

  • Burns AG, Killeen TL, Wang W, Roble RG (2004b) The solar-cycle-dependent response of the thermosphere to geomagnetic storms. J Atmos Solar Terr Phys 66:1–14

    Google Scholar 

  • Burns AG, Wang W, Killeen TL, Solomon SC, Wiltberger M (2006) Vertical variations in the N 2 mass mixing ratio during a thermospheric storm that have been simulated using a coupled magnetosphere-ionosphere-thermosphere model. J Geophys Res 111:A11309. doi:10.1029/2006JA011746

    Google Scholar 

  • Burns AG, Solomon SC, Wang W, Killeen TL (2007) The ionospheric and thermospheric response to CMEs: challenges and successes. J Atmos Solar Terr Phys 69:77–85

    Google Scholar 

  • Carter VL, Ching BK, Elliott DD (1969) Atmospheric density above 158 kilometers inferred from magnetron and drag data from the satellite OV1-15 (1968-059A). J Geophys Res 74:5083–5091

    Google Scholar 

  • Caspers T, Prölss GW (1999) Thermospheric density cells at high latitudes. Adv Space Res 24(11):1433–1437

    Google Scholar 

  • Chamberlain JW (1961) Physics of the aurora and airglow. Academic Press, New York, pp 297 ff

    Google Scholar 

  • Chandra S, Herman JR (1969) F-region ionization and heating during magnetic storms. Planet Space Sci 17:841–851

    Google Scholar 

  • Chandra S, Stubbe P (1971) Ion and neutral composition changes in the thermospheric region during magnetic storms. Planet Space Sci 19:491–502

    Google Scholar 

  • Chapman S (1937) The heating of the ionosphere by the electric currents associated with geomagnetic variations. Terr Mag Atmos Electr 42:355–358

    Google Scholar 

  • Chapman S (1959) Interplanetary space and the earth’s outermost atmosphere. Proc R Soc Lond A 253:462–481

    Google Scholar 

  • Christensen AB, Hecht JH, Walterscheid RL, Larsen MF, Sharp WE (1997) Depletion of oxygen in aurora: evidence for a local mechanism. J Geophys Res 102:22273–22277

    Google Scholar 

  • Clemmons JH, Hecht JH, Salem DR, Strickland DJ (2008) Thermospheric density in the Earth’s magnetic cusp as observed by the Streak mission. Geophys Res Lett 35:L24103. doi:10.1029/2008GL035972

    Google Scholar 

  • Cole KD (1962a) Atmospheric blow-up at the auroral zone. Nature 194:761

    Google Scholar 

  • Cole KD (1962b) Joule heating of the upper atmosphere. Aust J Phys 15:223–235

    Google Scholar 

  • Cole KD (1962c) Orbital acceleration of satellites during geomagnetic disturbance. Nature 194:42 and 75

    Google Scholar 

  • Cole KD (1965) Stable auroral red arcs, sinks for energy of Dst main phase. J Geophys Res 70:1689–1706

    Google Scholar 

  • Cole KD (1971) Electrodynamic heating and movement of the thermosphere. Planet Space Sci 19:59–75

    Google Scholar 

  • Cole KD (1975) Energy deposition in the thermosphere caused by the solar wind. J Atmos Terr Phys 37:939–949

    Google Scholar 

  • Cole KD (1981) Electromagnetic field dissipation and corpuscular bombardment and their implications in atmospheric modelling. Adv Space Res 1(12):19–25

    Google Scholar 

  • Cole KD, Hickey MP (1981) Energy transfer by gravity wave dissipation. Adv Space Res 1(12):65–75

    Google Scholar 

  • Cosgrove RB, Lu G, Bahcivan H, Matsuo T, Heinselman CJ, McCready MA (2009) Comparison of AMIE-modeled and Sondrestrom-measured Joule heating: a study in model resolution and electric field-conductivity correlation. J Geophys Res 114:A04316. doi:10.1029/2008JA013508

    Google Scholar 

  • Craven JD, Nicholas AC, Frank LA, Strickland DJ, Immel TJ (1994) Variations in the FUV dayglow after intense auroral activity. Geophys Res Lett 21:2793–2796

    Google Scholar 

  • Crowley G, Emery BA, Roble RG, Carlson HC Jr, Knipp DJ (1989) Thermospheric dynamics during September 18–19, 1984 1. Model simulations. J Geophys Res 94:16925–16944

    Google Scholar 

  • Crowley G, Schoendorf J, Roble RG, Marcos FA (1996) Cellular structures in the high-latitude thermosphere. J Geophys Res 101:211–223

    Google Scholar 

  • Crowley G, Immel TJ, Hackert CL, Craven J, Roble RG (2006) Effect of IMF B y on thermospheric composition at high and middle latitudes: 1. Numerical experiments. J Geophys Res 111:A10311. doi:10.1029/2005JA011371

    Google Scholar 

  • Crowley G, Reynolds A, Thayer JP, Lei J, Paxton LJ, Christensen AB, Zhang Y, Meier RR, Strickland DJ (2008) Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys Res Lett 35:L21106. doi:10.1029/2008GL035745

    Google Scholar 

  • Crowley G, Knipp DJ, Drake KA, Lei J, Sutton E, Lühr H (2010) Thermospheric density enhancements in the dayside cusp region during strong B Y conditions. Geophys Res Lett 37:L07110. doi:10.1029/2009GL042143

    Google Scholar 

  • Cummings WD, Dessler AJ (1967) Ionospheric heating associated with the main-phase ring current. J Geophys Res 72:257–263

    Google Scholar 

  • Demars HG, Schunk RW (2007) Thermospheric response to ion heating in the dayside cusp. J Atmos Solar Terr Phys 69:649–660

    Google Scholar 

  • Deng Y, Ridley AJ (2007) Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity. J Geophys Res 112:A09308. doi:10.1029/2006JA012006

    Google Scholar 

  • Deng Y, Maute A, Richmond AD, Roble RG (2008) Analysis of thermospheric response to magnetospheric inputs. J Geophys Res 113:A04301. doi:10.1029/2007JA012840

    Google Scholar 

  • Deng Y, Maute A, Richmond AD, Roble RG (2009) Impact of electric field variability on Joule heating and thermospheric temperature and density. Geophys Res Lett 36:L08105. doi:10.1029/2008GL036916

    Google Scholar 

  • Dessler AJ (1959a) Ionospheric heating by hydromagnetic waves. J Geophys Res 64:397–401

    Google Scholar 

  • Dessler AJ (1959b) Upper atmosphere density variations due to hydromagnetic heating. Nature 184:261–262

    Google Scholar 

  • Dessler AJ, Hanson WB, Parker EN (1961) Formation of the geomagnetic storm main-phase ring current. J Geophys Res 66:3631–3637

    Google Scholar 

  • DeVries LL (1972) Analysis and interpretation of density data from the low-g accelerometer calibration system (Logacs). Space Res 12:777–789

    Google Scholar 

  • DeVries LL, Friday EW, Jones LC (1967) Analysis of density data reduced from low-altitude, high resolution satellite tracking data. Space Res 7:1173–1182

    Google Scholar 

  • Dobbin AL, Aylward AD (2008) A three-dimensional modelling study of the processes leading to mid latitude nitric oxide increases in the lower thermosphere following periods of high geomagnetic activity. Adv Space Res 42:1576–1585

    Google Scholar 

  • Doornbos E, Klinkrad H (2006) Modelling of space weather effects on satellite drag. Adv Space Res 37:1229–1239

    Google Scholar 

  • Duncan RA (1969) F-region seasonal and magnetic-storm behaviour. J Atmos Terr Phys 31:59–70

    Google Scholar 

  • Emery BA, Coumans V, Evans DS, Germany GA, Greer MS, Holeman E, Kadinsky-Cade K, Rich FJ, Xu W (2008) Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J Geophys Res 113:A06311. doi:10.1029/2007JA012866

    Google Scholar 

  • Engebretson MJ, Mauersberger K (1983) The response of thermospheric atomic nitrogen to magnetic storms. J Geophys Res 88:6331–6338

    Google Scholar 

  • Engebretson MJ, Nelson JT (1985) Atomic nitrogen densities near the polar cusp. J Geophys Res 90:8407–8416

    Google Scholar 

  • Fang X, Liemohn MW, Kozyra JU, Evans DS, DeJong AD, Emery BA (2007a) Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 1. Patterns. J Geophys Res 112:A05301. doi:10.1029/2006JA011867

    Google Scholar 

  • Fang X, Ridley AJ, Liemohn MW, Kozyra JU, Evans DS (2007b) Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 3. Impact on the ionosphere and thermosphere. J Geophys Res 112:A07310. doi:10.1029/2006JA012144

    Google Scholar 

  • Forbes JM, Lu G, Bruinsma S, Nerem S, Zhang X (2005) Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J Geophys Res 110:A12S27. doi:10.1029/2004JA010856

    Google Scholar 

  • Fujiwara H, Miyoshi Y (2006) Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model. Geophys Res Lett 33:L20108. doi:10.1029/2006GL027103

    Google Scholar 

  • Fujiwara H, Maeda S, Fukunishi H, Fuller-Rowell TJ, Evans DS (1996) Global variations of thermospheric winds and temperatures caused by substorm energy injection. J Geophys Res 101:225–239

    Google Scholar 

  • Fujiwara H, Kataoka R, Suzuki M, Maeda S, Nozawa S, Hosokawa K, Fukunishi H, Sato N, Lester M (2007) Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations. Ann Geophys 25:2393–2403

    Google Scholar 

  • Fuller-Rowell TJ (1984) A two-dimensional, high-resolution, nested-grid model of the thermosphere 1. Neutral response to an electric field “spike”. J Geophys Res 89:2971–2990

    Google Scholar 

  • Fuller-Rowell TJ (1985) A two-dimensional, high-resolution, nested-grid model of the thermosphere 2. Response of the thermosphere to narrow and broad electrodynamic features. J Geophys Res 90:6567–6586

    Google Scholar 

  • Fuller-Rowell TJ, Rees D, Tinsley BA, Rishbeth H, Rodger AS, Quegan S (1990) Modelling the response of the thermosphere and ionosphere to geomagnetic storms: effects of a mid-latitude heat source. Adv Space Res 10(6):215–223

    Google Scholar 

  • Fuller-Rowell TJ, Rees D, Rishbeth H, Burns AG, Killeen TL, Roble RG (1991) Modelling of composition changes during F-region storms: a reassessment. J Atmos Terr Phys 53:541–550

    Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99:3893–3914

    Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Rishbeth H, Moffett RJ, Quegan S (1996) On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101:2343–2353

    Google Scholar 

  • Fuller-Rowell TJ, Matsuo T, Codrescu MV, Marcos FA (1999) Modeling thermospheric neutral density waves and holes in response to high latitude forcing. Adv Space Res 24(11):1447–1458

    Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Minter CF, Strickland D (2006) Application of thermospheric general circulation models for space weather operations. Adv Space Res 37:401–408

    Google Scholar 

  • Galperin YI, Poluyektov IA, Sobelman II (1966) Flux and spectrum of protons responsible for hydrogen emission in auroras. Geomag Aeron 6:479–492

    Google Scholar 

  • Gardner LC, Schunk RW (2010) Generation of traveling atmospheric disturbances during pulsating geomagnetic storms. J Geophys Res 115:A08314. doi:10.1029/2009JA015129

    Google Scholar 

  • Golovchanskaya IV (2008) Assessment of Joule heating for the observed distributions of high-latitude electric fields. Geophys Res Lett. 35:L16102

    Google Scholar 

  • Goncharenko L, Salah J, Crowley G, Paxton LJ, Zhang Y, Coster A, Rideout W, Huang C, Zhang S, Reinisch B, Taran V (2006) Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF B y . J Geophys Res 111:A03303. doi:10.1029/2004JA010683

    Google Scholar 

  • Groves GV (1961) Correlation of upper atmosphere air density with geomagnetic activity, November 1960. Space Res 2:751–753

    Google Scholar 

  • Hardy DA, Holeman EG, Burke WJ, Gentile LC, Bounar KH (2008) Probability distributions of electron precipitation at high magnetic latitudes. J Geophys Res 113:A06305. doi:10.1029/2007JA012746

    Google Scholar 

  • Hays PB, Jones RA, Rees MH (1973) Auroral heating and the composition of the neutral atmosphere. Planet Space Sci 21:559–573

    Google Scholar 

  • Hecht JH, Strickland DJ, Conde MG (2006) The application of ground-based optical techniques for inferring electron energy deposition and composition change during auroral precipitation events. J Atmos Solar Terr Phys 68:1502–1519

    Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92:4649–4662

    Google Scholar 

  • Hedin AE, GR Carignan (1985) Morphology of thermospheric composition variations in the quiet polar thermosphere from dynamics explorer measurements. J Geophys Res 90:5269–5277

    Google Scholar 

  • Hedin AE, Reber CA (1972) Longitudinal variations of thermospheric composition indicating magnetic control of polar heat input. J Geophys Res 77:2871–2879

    Google Scholar 

  • Hedin AE, Mayr HG, Reber CA, Spencer NW, Carignan GR (1974) Empirical model of global thermospheric temperature and composition based on data from the Ogo 6 quadrupole mass spectrometer. J Geophys Res 79:215–225

    Google Scholar 

  • Hedin AE, Salah JE, Evans JV, Reber CA, Newton GP, Spencer NW, Kayser DC, Alcaydé D, Bauer P, Cogger L, McClure JP (1977a) A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N 2 density and temperature. J Geophys Res 82:2139–2147

    Google Scholar 

  • Hedin AE, Reber CA, Newton GP, Spencer NW, Brinton HC, Mayr HG, Potter WE (1977b) A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition. J. Geophys. Res. 82:2148–2156

    Google Scholar 

  • Hernandez S, Lopez RE, Wiltberger M (2005) Ionospheric joule heating during magnetic storms: MHD simulations. Adv Space Res 36(10):1845–1848

    Google Scholar 

  • Hines CO (1965) Dynamical heating of the upper atmosphere. J Geophys Res 70:177–183

    Google Scholar 

  • Horvath I (2007) Impact of 10 January 1997 geomagnetic storm on the nighttime Weddell Sea Anomaly: a study utilizing data provided by the TOPEX/Poseidon mission and the Defense Meteorological Satellite Program, and simulations generated by the Coupled Thermosphere/Ionosphere Plasmasphere model. J Geophys Res 112:A06329. doi:10.1029/2006JA012153

    Google Scholar 

  • Iijima T, Potemra TA (1976) The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J Geophys Res 81:2165–2174

    Google Scholar 

  • Iijima T, Potemra TA (1978) Large-scale characteristics of field-aligned currents associated with substorms. J Geophys Res 83:599–615

    Google Scholar 

  • Illés-Almár E, Almár I, Bencze P (1996) Observational results hinting at the coupling of the thermosphere with the ionosphere/magnetosphere system and with the middle atmosphere. Adv Space Res 18(3):45–48

    Google Scholar 

  • Immel TJ, Craven JD, Frank LA (1997) Influence of IMF B y on large-scale decreases of O column density at middle latitudes. J Atmos Solar Terr Phys 59:725–737

    Google Scholar 

  • Immel TJ, Crowley G, Hackert CL, Craven JD, Roble RG (2006) Effect of IMF B y on thermospheric composition at high and middle latitudes: 2. Data comparisons. J Geophys Res 111:A10312. doi:10.1029/2005JA011372

    Google Scholar 

  • Ishikawa G (1959) Solar corpuscular radiation as a heat source of the upper atmosphere. Papers Meteorol Geophys 10(2):93–123

    Google Scholar 

  • Ishimoto M, Torr MR, Richards PG, Torr DG (1986) The role of energetic O + precipitation in a mid-latitude aurora. J Geophys Res 91:5793–5802

    Google Scholar 

  • Jacchia LG (1959) Corpuscular radiation and the acceleration of artificial satellites. Nature 183:1662–1663

    Google Scholar 

  • Jacchia LG (1961) A working model for the upper atmosphere. Nature 192:1147–1148

    Google Scholar 

  • Jacchia LG (1969) Atmospheric density variations during solar maximum and minimum. In: Solar-terrestrial physics: terrestrial aspects, Ann. IQSY, vol 5. MIT Press, Cambridge, pp 323–339

  • Jacchia LG (1972) Atmospheric models in the region from 110 to 2000 km. In: COSPAR international reference atmosphere (CIRA). Akademie Verlag, Berlin, pp 227–338

  • Jacchia LG, Slowey J (1964) Atmospheric heating in the auroral zones: a preliminary analysis of the atmospheric drag of the Injun 3 satellite. J Geophys Res 69:905–910

    Google Scholar 

  • Jacchia LG, Slowey JW, von Zahn U (1977) Temperature, density, and composition in the disturbed thermosphere from Esro 4 gas analyzer measurements: a global model. J Geophys Res 82:684–688

    Google Scholar 

  • Jacobs RL (1967) Atmospheric density derived from the drag of eleven low-altitude satellites. J Geophys Res 72:1571–1581

    Google Scholar 

  • Jastrow R (1960) Geophysical effects of the trapped particle layer. Space Res 1:1009–1018

    Google Scholar 

  • Jee G, Burns AG, Wang W, Solomon SC, Schunk RW, Scherliess L, Thompson DC, Sojka JJ, Zhu L (2008) Driving the TING model with GAIM electron densities: ionospheric effects on the thermosphere. J Geophys Res 113:A03305. doi:10.1029/2007JA012580

    Google Scholar 

  • Johnson FS (1960) Pressure and temperature equalization at 200-km altitude. J Geophys Res 65:2227–2232

    Google Scholar 

  • Johnson FS (1964) Composition changes in the upper atmosphere. In: Thrane E (eds) Electron density distribution in ionosphere and exosphere. North-Holland, Amsterdam, pp 81–84

    Google Scholar 

  • Johnson ES, Heelis RA (2005) Characteristics of ion velocity structure at high latitudes during steady southward interplanetary magnetic field conditions. J Geophys Res 110:A12301. doi:10.1029/2005JA011130

    Google Scholar 

  • King GAM (1962) The ionospheric F region during a storm. Planet Space Sci 9:95–100

    Google Scholar 

  • King GAM (1966) The ionospheric disturbance and atmospheric waves. J Atmos Terr Phys 28:957–963

    Google Scholar 

  • Kirby SS, Gilliland TR, Judson EB, Smith N (1935) The ionosphere, sunspots, and magnetic storms. Phys Rev 48:849

    Google Scholar 

  • Klostermeyer J (1973) Thermospheric heating by atmospheric gravity waves. J Atmos Terr Phys 35:2267–2275

    Google Scholar 

  • Knipp DJ, Tobiska WK, Emery BA (2004) Direct and indirect thermospheric heating sources for solar cycles 21–23. Solar Phys 224:495–505

    Google Scholar 

  • Knipp DJ, Welliver T, McHarg MG, Chun FK, Tobiska WK, Evans D (2005) Climatology of extreme upper atmospheric heating events. Adv Space Res 36(12):2506–2510

    Google Scholar 

  • Köhnlein W (1980) A model of thermospheric temperature and composition. Planet Space Sci 28:225–243

    Google Scholar 

  • Kozyra JU, Cravens TE, Nagy AF (1982) Energetic O + precipitation. J Geophys Res 87:2481–2486

    Google Scholar 

  • Krassovsky VI (1959) Energy sources of the upper atmosphere. Planet Space Sci 1:14–19

    Google Scholar 

  • Krassovsky VI (1968) Aurorae. Planet Space Sci 16:47–59

    Google Scholar 

  • Kwak Y-S, Richmond AD, Deng Y, Forbes JM, Kim K-H (2009) Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field. J Geophys Res 114:A05304. doi:10.1029/2008JA013882

    Google Scholar 

  • Lathuillère C, Menvielle M, Marchaudon A, Bruinsma S (2008) A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes. J Geophys Res 113:A07311. doi::10.1029/2007JA012991

    Google Scholar 

  • Lei J, Thayer JP, Forbes JM, Sutton EK, Nerem RS (2008a) Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys Res Lett 35:L10109. doi:10.1029/2008GL033875

    Google Scholar 

  • Lei J, Wang W, Burns AG, Solomon SC, Richmond AD, Wiltberger M, Goncharenko LP, Coster A, Reinisch BW (2008b) Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: initial phase. J Geophys Res 113:A01314. doi:10.1029/2007JA012807

    Google Scholar 

  • Lei J, Thayer JP, Burns AG, Lu G, Deng Y (2010a) Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm. J Geophys Res 115:A05303. doi:10.1029/2009JA014754

    Google Scholar 

  • Lei J, Thayer JP, Forbes JM (2010b) Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly. J Geophys Res 115:A08311. doi:10.1029/2009JA015177

    Google Scholar 

  • Liou K, Newell PT, Anderson BJ, Zanetti L, Meng C-I (2005) Neutral composition effects on ionospheric storms at middle and low latitudes. J Geophys Res 110:A05309. doi:10.1029/2004JA010840

    Google Scholar 

  • Liu H, Lühr H, Henize V, Köhler W (2005) Global distribution of the thermospheric total mass density derived from Champ. J Geophys Res 110:A04301. doi:10.1029/2004JA010741

    Google Scholar 

  • Liu R, Lühr H, Doornbos E, Ma S-Y (2010a) Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field. Ann Geophys 28:1633–1645

    Google Scholar 

  • Liu R, Lühr H, Ma S-Y (2010b) Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann Geophys 28:165–180

    Google Scholar 

  • Lu G, Mlynczak MG, Hunt LA, Woods TN, Roble RG (2010) On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J Geophys Res 115:A05306. doi:10.1029/2009JA014662

    Google Scholar 

  • Lühr H, Rother M, Köhler W, Ritter P, Grunwaldt L (2004) Thermospheric up-welling in the cusp region: evidence from CHAMP observations. Geophys Res Lett 31:L06805. doi:10.1029/2003GL019314

    Google Scholar 

  • Maris HB, Hulburt EO (1929a) A theory of auroras and magnetic storms. Phys Rev 33:412–431

    Google Scholar 

  • Maris HB, Hulburt EO (1929b) Wireless telegraphy and magnetic storms. Proc Inst Radio Eng 17:494–500

    Google Scholar 

  • Martyn DF (1953) Geo-morphology of F -region ionospheric storms. Nature 171:14–16

    Google Scholar 

  • Marubashi K, Reber CA, Taylor HA Jr (1976) Geomagnetic storm effects on the thermosphere and the ionosphere revealed by in situ measurements from OGO 6. Planet Space Sci 24:1031–1041

    Google Scholar 

  • Matsuo T, Forbes JM (2010) Principal modes of thermospheric density variability: empirical orthogonal function analysis of CHAMP 2001–2008 data. J Geophys Res 115:A07309

    Google Scholar 

  • Matsuo T, Richmond AD (2008) Effects of high-latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate. J Geophys Res 113:A07309. doi:10.1029/2007JA012993

    Google Scholar 

  • May BR, Miller DE (1971) The correlation between air density and magnetic disturbance deduced from changes of satellite spin-rate. Planet Space Sci 19:39–48

    Google Scholar 

  • Mayr HG, Hedin AE (1977) Significance of large-scale circulation in magnetic storm characteristics with application to AE-C neutral composition data. J Geophys Res 82:1227–1234

    Google Scholar 

  • Mayr HG, Trinks H (1977) Spherical asymmetry in thermospheric magnetic storms. Planet Space Sci 25:607–613

    Google Scholar 

  • Mayr HG, Volland H (1972) Magnetic storm effects in the neutral composition. Planet Space Sci 20:379–393

    Google Scholar 

  • Mayr HG, Volland H (1973) Magnetic storm characteristics of the thermosphere. J Geophys Res 78:2251–2264

    Google Scholar 

  • Mayr HG, Volland H (1974) Magnetic storm dynamics of the thermosphere. J Atmos Terr Phys 36:2025–2036

    Google Scholar 

  • Mayr HG, Harris I, Spencer NW (1978) Some properties of upper atmospheric dynamics. Rev Geophys Space Phys 16:539–565

    Google Scholar 

  • Mayr HG, Harris I, Herrero FA, Varosi F (1997) Winds and composition changes in the thermosphere using the transfer function model. J Atmos Solar Terr Phys 59:691–709

    Google Scholar 

  • McHarg M, Chun F, Knipp D, Lu G, Emery B, Ridley A (2005) High-latitude Joule heating response to IMF inputs. J Geophys Res 110:A08309. doi:10.1029/2004JA010949

    Google Scholar 

  • Menzel DH, Salisbury WW (1948) Audio-frequency radio waves from the sun. Nature 161:91

    Google Scholar 

  • Mikhailov AV (2000) Ionospheric F2-layer storms. Fisica de la Tierra 12:223–262

    Google Scholar 

  • Mikhailov AV, Förster M, Skoblin MG (1997) An estimate of the non-barometric effect in the [O] height distribution at low latitudes during magnetically disturbed periods. J Atmos Solar Terr Phys 59:1209–1215

    Google Scholar 

  • Mögel H (1930) Über die Beziehung zwischen Empfangsstörungen bei Kurzwellen und den Störungen des magnetischen Feldes der Erde. Telefunken Z 11:14–31

    Google Scholar 

  • Müller S, Lühr H, Rentz S (2009) Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann Geophys 27:2087–2099

    Google Scholar 

  • Namgaladze AA, Zubova YuV, Namgaladze AN, Martynenko OV, Doronina EN, Goncharenko LP, Van Eyken A, Howells V, Thayer JP, Taran VI, Shpynev B, Zhou Q (2006) Modelling of the ionosphere/thermosphere behaviour during the April 2002 magnetic storms: a comparison of the UAM results with the ISR and NRLMSISE-00 data. Adv Space Res 37:380–391

    Google Scholar 

  • Newell RE (1966) Thermospheric energetics and a possible explanation of some observations of geomagnetic disturbances and radio aurorae. Nature 211:700–703

    Google Scholar 

  • Nicholas AC, Craven JD, Frank LA (1997) A survey of large-scale variations in thermospheric oxygen column density with magnetic activity as inferred from observations of the FUV dayglow. J Geophys Res 102:4493–4510

    Google Scholar 

  • Nicolet M (1962) Density and energy in the upper atmosphere. J Phys Soc Jpn 17(Suppl. A-I):314–320

    Google Scholar 

  • Nisbet JS, Glenar DA (1977) Thermospheric meridional winds and atomic oxygen depletion at high latitudes. J Geophys Res 82:4685–4693

    Google Scholar 

  • Noël S, Prölss GW (1993) Heating and radiation production by neutralized ring current particles. J Geophys Res 98:17317–17325

    Google Scholar 

  • Obayashi T, Matuura N (1972) Theoretical model of F-region storms. In: Dyer ER (eds) Solar-Terrestrial Physics IV. Reidel, Dordrecht, pp 199–211

    Google Scholar 

  • Olson WP (1972) Corpuscular radiation as an upper atmospheric energy source. Space Res 12:1007–1013

    Google Scholar 

  • Owens JK, Niehuss KO, Vaughan WW, Shea MA (2000) NASA marshall engineering thermosphere model—1999 version (MET-99) and implications for satellite lifetime predictions. Adv Space Res 26(1):157–162

    Google Scholar 

  • Paetzold HK (1963) Solar activity effects in the upper atmosphere deduced from satellite observations. Space Res 3:28–52

    Google Scholar 

  • Palmroth M, Janhunen P, Germany G, Lummerzheim D, Liou K, Baker DN, Barth C, Weatherwax AT, Watermann J (2006) Precipitation and total power consumption in the ionosphere: global MHD simulation results compared with Polar and SNOE observations. Ann Geophys 24:861–872

    Google Scholar 

  • Pawlowski DJ, Ridley AJ, Kim I, Bernstein DS (2008) Global model comparison with Millstone Hill during September 2005. J Geophys Res 113:A01312. doi:10.1029/2007JA012390

    Google Scholar 

  • Perreault P, Akasofu S-I (1978) A study of geomagnetic storms. Geophys J 54:547–573

    Google Scholar 

  • Petersen H (1927a) On the heating of the uppermost atmosphere caused by cathodic rays from the sun. Publ Dansk Meteor Inst 3:1–9

    Google Scholar 

  • Petersen H (1927b) Über die Temperatur in den höheren Schichten der Atmosphäre. Physik Zeitschr 28:510–513

    Google Scholar 

  • Philbrick CR, McIsaac JP, Faucher GA (1977) Variations in the atmospheric composition and density during a geomagnetic storm. Space Res 17:349–353

    Google Scholar 

  • Picone JM, Hedin AE, Drob DP (2002) NRLMSISe-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107:A12, 1468. doi:10.1029/2002JA009430

    Google Scholar 

  • Potter WE, Kayser DC (1976) In situ measurements of neon in the thermosphere. Geophys Res Lett 3:665–668

    Google Scholar 

  • Potter WE, Kayser DC, Nier AO (1979a) Thermospheric variations as an indicator of magnetic storm heating and circulation. Space Res 19:259–262

    Google Scholar 

  • Potter WE, Kayser DC, Nier AO (1979b) Thermal and wind-induced variations in thermospheric molecular oxygen as measured on AE-D. J Geophys Res 84:10–16

    Google Scholar 

  • Prölss GW (1973) Radiation production and energy deposition by ring current protons precipitated into the mid-latitude upper atmosphere. Planet Space Sci 21:1681–1690

    Google Scholar 

  • Prölss GW (1980) Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satellite-borne gas analyzers. Rev Geophys Space Phys 18:183–202

    Google Scholar 

  • Prölss GW (1981) Latitudinal structure and extension of the polar atmospheric disturbance. J Geophys Res 86:2385–2396

    Google Scholar 

  • Prölss GW (1982) Perturbation of the low-latitude upper atmosphere during magnetic substorm activity. J Geophys Res 87:5260–5266

    Google Scholar 

  • Prölss GW (1985) Correlation between upper atmospheric temperature and solar wind conditions. J Geophys Res 902:11096–11100

    Google Scholar 

  • Prölss GW (1992) Satellite mass spectrometer measurements of composition changes. Adv Space Res 12(10):241–251

    Google Scholar 

  • Prölss GW (1993) Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J Geophys Res 98:5981–5991

    Google Scholar 

  • Prölss GW (1997) Magnetic storm associated perturbations of the upper atmosphere. In: Tsurutani BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms. Geophysics Monograph 98. AGU, Washington, pp 227–241

    Google Scholar 

  • Prölss GW (2004) Physics of the earth’s space environment—an introduction. Springer, Berlin

    Google Scholar 

  • Prölss GW (2005) Space weather effects in the upper atmosphere: Low and middle latitudes. In: Scherer K, Fichtner H, Heber B, Mall U (eds) Space weather. Lecture Notes in Physics 656. Springer, Berlin, pp 193–234

  • Prölss GW (2008a) Ionospheric storms at mid-latitudes: a short review. In: Kintner PM (eds) Midlatitude ionospheric dynamics and disturbances. AGU monograph 181. American Geophysical Union, Washington, pp 9–24

    Google Scholar 

  • Prölss GW (2008b) Perturbations of the polar upper atmosphere in the cleft region. J Atmos Solar Terr Phys 70:2374–2380

    Google Scholar 

  • Prölss GW, Ocko M (2000) Propagation of upper atmospheric storm effects towards lower latitudes. Adv Space Res 26(1):131–135

    Google Scholar 

  • Prölss GW, Roemer M (1983) Seasonal and solar activity dependent variations of the geomagnetic activity effect at high latitudes. Adv Space Res 3(1):99–102

    Google Scholar 

  • Prölss GW, von Zahn U (1976) Large and small scale changes in the disturbed upper atmosphere. J Atmos Terr Phys 38:655–659

    Google Scholar 

  • Prölss GW, von Zahn U (1977) Seasonal variations in the latitudinal structure of atmospheric disturbances. J Geophys Res 82:5629–5632

    Google Scholar 

  • Prölss GW, von Zahn U (1978) On the local time variation of atmospheric-ionospheric disturbances. Space Res 18:159–162

    Google Scholar 

  • Prölss GW, Najita K, Yuen PC (1973) Heating of the low-latitude upper atmosphere caused by the decaying magnetic storm ring current. J Atmos Terr Phys 35:1889–1901

    Google Scholar 

  • Prölss GW, Roemer M, Slowey JW (1988) Dissipation of solar wind energy in the earth’s upper atmosphere: the geomagnetic activity effect. Adv Space Res 8(5-6):215–261

    Google Scholar 

  • Prölss GW, Werner S, Codrescu MV, Fuller-Rowell TJ, Burns AG, Killeen TL (1998) The thermospheric-ionospheric storm of Dec 8, 1982: model predictions and observations. Adv Space Res 22(1):123–128

    Google Scholar 

  • Qin G, Qiu S, Ye H, He A, Sun L, Lin X, Li H, Xu X, Zeng H (2008) The thermospheric composition different responses to geomagnetic storm in the winter and summer hemisphere measured by “SZ” Atmospheric Composition Detectors. Adv Space Res 42:1281–1287

    Google Scholar 

  • Rae IJ, Watt CEJ, Fenrich FR, Mann IR, Ozeke LG, Kale A (2007) Energy deposition in the ionosphere through a global field line resonance. Ann Geophys 25:2529–2539

    Google Scholar 

  • Reber CA, Hedin AE (1974) Heating of the high-latitude thermosphere during magnetically quiet periods. J Geophys Res 79:2457–2461

    Google Scholar 

  • Reber CA, Nicolet M (1965) Investigation of the major constituents of the April–May 1963 heterosphere by the Explorer XVII satellite. Planet Space Sci 13:617–646

    Google Scholar 

  • Rees MH (1975) Magnetospheric substorm energy dissipation in the atmosphere. Planet Space Sci 23:1589–1596

    Google Scholar 

  • Rees D (1985) The response of the high-latitude thermosphere to geomagnetic activity. Adv Space Res 5(4):267–282

    Google Scholar 

  • Rees D, Gordon R, Fuller-Rowell TJ, Smith M, Carignan GR, Killeen TL, Hays PB, Spencer NW (1985) The composition, structure, temperature and dynamics of the upper thermosphere in the polar regions during October to December 1981. Planet Space Sci 33:617–666

    Google Scholar 

  • Rentz S, Lühr H (2008) Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann Geophys 26:2807–2823

    Google Scholar 

  • Richards PG (2004) On the increases in nitric oxide density at midlatitudes during ionospheric storms. J Geophys Res 109:A06304. doi:10.1029/2003JA010110

    Google Scholar 

  • Richards PG, Meier RR, Wilkinson PJ (2010) On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data. J Geophys Res 115:A10309. doi:10.1029/2010JA015368

    Google Scholar 

  • Richmond AD (1979a) Thermospheric heating in a magnetic storm: dynamic transport of energy from high to low latitudes. J Geophys Res 84:5259–5266

    Google Scholar 

  • Richmond AD (1979b) Large-amplitude gravity wave energy production and dissipation in the thermosphere. J Geophys Res 84:1880–1890

    Google Scholar 

  • Richmond AD, Matsushita S (1975) Thermospheric response to a magnetic substorm. J Geophys Res 80:2839–2850

    Google Scholar 

  • Rishbeth H (1974) Some problems of the F-region. Radio Sci 9:183–187

    Google Scholar 

  • Rishbeth H (1975) F-region storms and thermospheric circulation. J Atmos Terr Phys 37:1055–1064

    Google Scholar 

  • Rishbeth H, Müller-Wodarg ICF (1999) Vertical circulation and thermospheric composition: a modelling study. Ann Geophys 17:794–805

    Google Scholar 

  • Rishbeth H, Gordon R, Rees D, Fuller-Rowell TJ (1985) Modelling of thermospheric composition changes caused by a severe magnetic storm. Planet Space Sci 33:1283–1301

    Google Scholar 

  • Rishbeth H, Fuller-Rowell TJ, Rees D (1987) Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: a computational study. Planet Space Sci 35:1157–1165

    Google Scholar 

  • Ritter P, Lühr H, Doornbos E (2010) Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Ann Geophys 28:1207–1220

    Google Scholar 

  • Roble RG, Forbes JM, Marcos FA (1987) Thermospheric dynamics during the March 22, 1979, magnetic storm, 1. model simulations. J Geophys Res 92:6045–6068

    Google Scholar 

  • Roemer M (1969) Structure of the thermosphere and its variations. Ann Geophys 25:419–437

    Google Scholar 

  • Roemer M (1971) Geomagnetic activity effect on atmospheric density in the 250 to 800 km altitude region. Space Res 11:965–974

    Google Scholar 

  • Roemer M (1972) Recent observational results on the thermosphere and exosphere. In: COSPAR international reference atmosphere (CIRA). Akademie-Verlag, Berlin, pp 341–396

  • Rosenqvist L, Buchert S, Opgenoorth H, Vaivads A, Lu G (2006) Magnetospheric energy budget during huge geomagnetic activity using cluster and ground-based data. J Geophys Res 111:A10211. doi:10.1029/2006JA011608

    Google Scholar 

  • Rothwell P, McIlwain CE (1960) Magnetic storms and the Van Allen radiation belts—observations from satellite 1958ε (Explorer IV). J Geophys Res 65:799–806

    Google Scholar 

  • Russell AT, St.-Maurice J-P, Sica RJ, Noël J-M (2007) Composition changes during disturbed conditions: are mass spectrometers overestimating the concentrations of atomic oxygen?. Geophys Res Lett 34:L21106. doi:10.1029/2007GL030607

    Google Scholar 

  • Sætre C, Stadsnes J, Nesse H, Aksnes A, Petrinec SM, Barth CA, Baker DN, Vondrak RR, Østgaard N (2004) Energetic electron precipitation and the NO abundance in the upper atmosphere: a direct comparison during a geomagnetic storm. J Geophys Res 109:A09302. doi:10.1029/2004JA010485

    Google Scholar 

  • Sætre C, Barth CA, Stadsness J, Østgaard N, Bailey SM, Baker DN, Gjerloev JW (2006) Comparisons of electron energy deposition derived from observations of lower thermospheric nitric oxide and from X-ray bremsstrahlung measurements. J Geophys Res 111:A04302. doi:10.1029/2005JA011391

    Google Scholar 

  • Sætre C, Barth CA, Stadsnes J, Østgaard N, Bailey SM, Baker DN, Germany GA, Gjerloev JW (2007) Thermospheric nitric oxide at higher latitudes: model calculations with auroral energy input. J Geophys Res 112:A08306. doi:10.1029/2006JA012203

    Google Scholar 

  • Schlegel K, Lühr H, St.-Maurice J-P, Crowley G, Hackert C (2005) Thermospheric density structures over the polar regions observed with CHAMP. Ann Geophys 23:1659–1672

    Google Scholar 

  • Schröder S, Prölss GW (1991) Heating of the upper atmosphere by oxygen ions precipitated from the ring current. Ann Geophys 9:267–272

    Google Scholar 

  • Schunk RW (1975) Transport equations for aeronomy. Planet Space Sci 23:437–485

    Google Scholar 

  • Schunk RW (1977) Mathematical structure of transport equations for multispecies flows. Rev Geophys Space Phys 15:429–445

    Google Scholar 

  • Schunk RW, Zhu L (2008) Response of the ionosphere-thermosphere system to magnetospheric processes. J Atmos Solar Terr Phys 70:2358–2373

    Google Scholar 

  • Schuster A (1908) The diurnal variation of terrestrial magnetism. Phil Trans R Soc Lond A 208:163–204

    Google Scholar 

  • Seaton MJ (1956) A possible explanation of the drop in F-region critical densities accompanying major ionospheric storms. J Atmos Terr Phys 8:122–124

    Google Scholar 

  • Shimazaki T (1972) Effects of vertical mass motions on the composition structure in the thermosphere. Space Res 12:1039–1045

    Google Scholar 

  • Sinha AK, Chandra S (1974) Seasonal and magnetic storm related changes in the thermosphere induced by eddy mixing. J Atmos Terr Phys 36:2055–2066

    Google Scholar 

  • Skoblin MG, Mikhailov AV (1996) Some peculiarities of altitudinal distribution of atomic oxygen at low latitudes during magnetic storms. J Atmos Terr Phys 58:875–881

    Google Scholar 

  • Slowey JW (1987) Thermospheric storm effects. Adv Space Res 7(10):237–245

    Google Scholar 

  • St.-Maurice JP, Schunk RW (1981) Ion-neutral momentum coupling near discrete high-latitude ionospheric features. J Geophys Res 86:11299–11321

    Google Scholar 

  • Strickland DJ, Cox RJ, Meier RR, Drob DP (1998) Global O/N 2 derived from DE-1 FUV dayglow data: technique and examples from two storm periods. J Geophys Res 104:4251–4266

    Google Scholar 

  • Stubbe P (1972) Vertical neutral gas motions and deviations from the barometric law in the lower thermosphere. Planet Space Sci 20:209–215

    Google Scholar 

  • Stubbe P (1974) On deviations from the barometric law in the lower thermosphere. Planet Space Sci 22:186–189

    Google Scholar 

  • Stubbe P (1982) Interaction of neutral and plasma motions in the ionosphere. In: Rawer K (ed) Handbuch der Physik, 49/6, Geophysik 3/6. Springer, pp 247–308

  • Sutton EK, Forbes JM, Nerem RS (2005) Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res 110:A09S40 010985. doi:10.1029/2004JA

    Google Scholar 

  • Taeusch DR, Hinton BB (1975) Structure of electrodynamic and particle heating in the undisturbed polar thermosphere. J Geophys Res 80:4346–4350

    Google Scholar 

  • Taeusch DR, Carignan GR, Reber CA (1971) Neutral composition variation above 400 kilometers during a magnetic storm. J Geophys Res 76:8318–8325

    Google Scholar 

  • Testud J (1970) Gravity waves generated during magnetic substorms. J Atmos Terr Phys 32:1793–1805

    Google Scholar 

  • Testud J, Amayenc P, Blanc M (1975) Middle and low latitude effects of auroral disturbances from incoherent scatter. J Atmos Terr Phys 37:989–1009

    Google Scholar 

  • Thayer JP, Lei J, Forbes JM, Sutton EK, Nerem RS (2008) Thermospheric density oscillations due to periodic solar wind high-speed streams. J Geophys Res 113:A06307. doi:10.1029/2008JA013190

    Google Scholar 

  • Thomas GE, Ching BK (1969) Upper atmospheric response to transient heating. J Geophys Res 74:1796–1811

    Google Scholar 

  • Tinsley BA (1979a) Energetic neutral atom precipitation as a possible source of midlatitude F region winds. Geophys Res Lett 6:291–293

    Google Scholar 

  • Tinsley BA (1979b) Energetic neutral atom precipitation during magnetic storms: optical emission, ionization, and energy deposition at low and middle latitudes. J Geophys Res 84:1855–1864

    Google Scholar 

  • Tinsley BA (1981) Neutral atom precipitation—a review. J Atmos Terr Phys 43:617–632

    Google Scholar 

  • Tinsley BA, Sahai Y, Biondi MA, Meriwether JW Jr (1988) Equatorial particle precipitation during magnetic storms and relationship to equatorial thermospheric heating. J Geophys Res 93:270–276

    Google Scholar 

  • Torr MR, Torr DG (1979) Energetic oxygen: a direct coupling mechanism between the magnetosphere and thermosphere. Geophys Res Lett 6:700–702

    Google Scholar 

  • Torr MR, Torr DG, Roble RG, Ridley EC (1982) The dynamic response of the thermosphere to the energy influx resulting from energetic O + ions. J Geophys Res 87:5290–5300

    Google Scholar 

  • Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Araki T, Sato A, Tsuda T, Yumoto K (2007) Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event. Ann Geophys 25:569–574

    Google Scholar 

  • Turunen E, Verronen PT, Seppälä A, Rodger CJ, Clilverd MA, Tamminen J, Enell C-F, Ulich T (2009) Impact of different energies of precipitating particles on NO x generation in the middle and upper atmosphere during geomagnetic storms. J Atmos Solar Terr Phys 71:1176–1189

    Google Scholar 

  • Van Allen JA, McIlwain CE, Ludwig GH (1959) Radiation observations with satellite 1958 ε. J Geophys Res 64:271–286

    Google Scholar 

  • Vasyliūnas VM, Song P (2005) Meaning of ionospheric Joule heating. J Geophys Res 110:A02301. doi:10.1029/2004JA010615

    Google Scholar 

  • Volland H (1967) Heat conduction waves in the upper atmosphere. J Geophys Res 72:2831–2841

    Google Scholar 

  • Volland H (1969) A theory of thermospheric dynamics—II Geomagnetic activity effect, 27-day variation and semiannual variation. Planet Space Sci 17:1709–1724

    Google Scholar 

  • Volland H (1979) Magnetospheric electric fields and currents and their influence on large scale thermospheric circulation and composition. J Atmos Terr Phys 41:853–866

    Google Scholar 

  • Volland H (1988) Thermospheric storms. In: Atmospheric tidal and planetary waves. Kluwer, pp 304–317

  • Volland H, Mayr HG (1971) Response of the thermospheric density to auroral heating during geomagnetic disturbances. J Geophys Res 76:3764–3776

    Google Scholar 

  • von Zahn U (1975) Early aeronomy results from the satellite Esro 4. In: McCormac BM (eds) Atmospheres of earth and the planets. Reidel, Dordrecht, pp 133–157

    Google Scholar 

  • von Zahn U, Fricke KH (1978) Empirical models of global thermospheric composition and temperature during geomagnetically quiet times compared with ESRO-4 gas analyzer data. Rev Geophys Space Phys 16:169–175

    Google Scholar 

  • von Zahn U, Köhnlein W, Fricke KH, Laux U, Trinks H, Volland H (1977) ESRO-4 model of global thermospheric composition and temperatures during times of low solar activity. Geophys Res Lett 4:33–36

    Google Scholar 

  • Weimer DR (2005) Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res 110:A05306. doi:10.1029/2004JA010884

    Google Scholar 

  • Wickwar VB (1975) Chatanika radar measurements. In: McCormac BM (eds) Atmospheres of earth and the planets. Reidel, Dordrecht, pp 111–124

    Google Scholar 

  • Wickwar VB, Baron MJ, Sears RD (1975) Auroral energy input from energetic electrons and joule heating at Chatanika. J Geophys Res 80:4364–4367

    Google Scholar 

  • Wilson GR, Weimer DR, Wise JO, Marcos FA (2006) Response of the thermosphere to Joule heating and particle precipitation. J Geophys Res 111:A10314. doi:10.1029/2005JA011274

    Google Scholar 

  • Zhang XX, Wang C, Chen T, Wang YL, Tan A, Wu TS, Germany GA, Wang W (2005) Global patterns of Joule heating in the high-latitude ionosphere. J Geophys Res 110:A12208. doi:10.1029/2005JA011222

    Google Scholar 

  • Zhou YL, Ma SY, Lühr H, Xiong C, Reigber C (2009) An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data. Adv Space Res 43:819–828

    Google Scholar 

  • Zuzic M, Scherliess L, Prölss GW (1997) Latitudinal structure of thermospheric composition perturbations J. Atmos Solar Terr Phys 59:711–724

    Google Scholar 

Download references

Acknowledgments

The author would like to thank all those who participated in collecting the data used in this study. In particular, he is very grateful to U. von Zahn, G. Carignan, and C. Berger for providing the ESRO 4, DE-2 and CASTOR data presented in this review. Thanks are also due to all the authors whose figures have been reproduced. Finally, the author is indebted to M. Weigand and M. Bird for their help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd W. Prölss.

Appendix

Appendix

1.1 Collection of publications on thermospheric density perturbations

This collection contains 492 papers on thermospheric density perturbations which were published between 1959 and 2009. Also included are 14 papers published in 2010 prior to the submission of this manuscript. They were found in various journals and books. With very few exceptions all papers contain at least a summary in English. It should be emphasized that not all of these publications deal exclusively with perturbation effects. In fact, in quite a few cases only subsections are dedicated to this subject. Not included in this collection are studies on temperature changes unless these were derived from density measurements and thus represent a convenient description of them. Also not included are studies dealing with smaller-scale fluctuations and wave-like perturbations. An exception is a selection of papers on large-scale traveling atmospheric disturbances. Finally, it should be emphasized that this collection is by no means considered as complete. I apologize to all authors whose work I have missed.

  • Aikin, A.C., A.E. Hedin, D.J. Kendig, and S. Drake, Thermospheric molecular oxygen measurements using the ultraviolet spectrometer on the Solar Maximum Mission spacecraft, J. Geophys. Res., 98, 17607–17613, 1993

  • Allan, R.R., Upper atmosphere heating at high latitudes, Space Res., 12, 857–866, 1972a

  • Allan, R.R., Upper atmosphere heating near the auroral zones, Nature, 235, 100–102, 1972b

  • Allan, R.R., Response of dayside thermosphere to an intense geomagnetic storm, Nature, 247, 23–25, 1974

  • Allan, R.R., and G.E. Cook, Thermospheric densities during an intense magnetic storm, from the LOGACS experiment, J. Atmos. Terr. Phys., 36, 1739–1752, 1974

  • Almár, I., and E. Illés-Almár, An “equivalent duration” to characterize atmospheric disturbances connected with geomagnetic storms, Space Res., 11, 975–979, 1971

  • Almár, I., and E. Illés-Almár, An analysis of the altitude dependence of the geomagnetic effect by means of “equivalent durations”, Space Res., 13, 363–368, 1973

  • Almár, I., and E. Illés-Almár, A proposal to improve the CIRA ‘86 model in the equatorial region: the ddMSIS model, Adv. Space Res., 34 , No. 8, 1768–1772, 2004

  • Almár, I., E. Illés-Almár, A. Horváth, Z. Kolláth, D.V. Bisikalo, and T.V. Kasimenko, Improvement of the MSIS 86 and DTM thermospheric models by investigating the geomagnetic effect, Adv. Space Res., 12 , No. 6, 313–316, 1992

  • Almár, I., E. Illés-Almár, A. Horváth, and D. V. Bisikalo, A new geomagnetic term for the CIRA ‘86 model at low latitudes, Adv. Space Res., 18 , No. 9/10, 371–374, 1996a

  • Almár, I., E. Illés-Almár, A. Horváth, J. Kelemen, D. V. Bisikalo, and T. V. Kasimenko, Investigation and modelling of an improved geomagnetic term for the CIRA ‘86 model at low latitudes, Adv. Space Res., 18 , No. 9/10, 375–381, 1996b

  • Anderson, A.D., The relation between low-latitude neutral density variations near 400 km and magnetic activity indices, Planet. Space Sci., 21, 2049–2060, 1973

  • Bailey, S.M., C.A. Barth, and S.C. Solomon, A model of nitric oxide in the lower thermosphere, J. Geophys. Res., 107, A8, 10.1029/2001JA000258, 2002

  • Baker, D.N., C.A. Barth, K.E. Mankoff, S.G. Kanekal, S.M. Bailey, G.M. Mason, and J.E. Mazur, Relationships between precipitating auroral zone electrons and lower thermospheric nitric oxide densities: 1998 – 2000, J. Geophys. Res., 106, 24465–24480, 2001

  • Banks, P.M., and A.F. Nagy, Cyclonic disturbances and their consequences in the thermosphere, Geophys. Res. Lett., 1, 305–308, 1974

  • Barlier, F., and C. Berger, A point of view on semi-empirical thermospheric models, Planet. Space Sci., 31, 945–966, 1983

  • Barlier, F., and C. Meyer, Densités entre 150 et 180 km deduites d’observations de satellites artificiels a périgée tres bas, ou en voie de chute, en particulier à partir de celles de 66.51.C (ERS 16), Space Res., 8, 969–975, 1968

  • Barlier, F., C. Berger, J.L. Falin, G. Kockarts, and G. Thuillier, A thermospheric model based on satellite drag data, Ann. Geophys., 34, 9–24, 1978

  • Barlier, F., C. Berger, J.L. Falin, G. Kockarts, and G. Thuillier, Comparisons between various semi-empirical thermospheric models of the terrestrial atmosphere, J. Atmos. Terr. Phys., 41, 527–541, 1979

  • Barth, C.A., Reference models for thermospheric NO, Adv. Space Res., 10 , No. 6, 103–115, 1990

  • Barth, C.A., Nitric oxide in the lower thermosphere, Planet. Space Sci., 40, 315–336, 1992

  • Barth, C.A., Nitric oxide in the lower thermosphere, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (R.M. Johnson, and T.L. Killeen, eds.), 225–233, AGU Geophysical Monograph 87, American Geophysical Union, Washington/DC, 1995

  • Barth, C.A., and S.M. Bailey, Comparison of a thermospheric photochemical model with Student Nitric Oxide Explorer (SNOE) observations of nitric oxide, J. Geophys. Res., 109, A03304, doi:10.1029/2003JA010227, 2004

  • Barth, C.A., D.N. Baker, K.D. Mankoff, and S.M. Bailey, The northern auroral region as observed in nitric oxide, Geophys. Res. Lett., 28, 1463–1466, 2001

  • Barth, C.A., K.D. Mankoff, S.M. Bailey, and S.C. Solomon, Global observations of nitric oxide in the thermosphere, J. Geophys. Res., 108, A1, 1027, doi:10.1029/2002JA009458, 2003

  • Barth, C.A., G. Lu, and R.G. Roble, Joule heating and nitric oxide in the thermosphere, J. Geophys. Res., 114, A05301, doi:10.1029/2008JA013765, 2009

  • Bates, H.F., Atmospheric expansion from Joule heating, Planet. Space Sci., 22, 925–937, 1974a

  • Bates, H.F., Thermospheric changes shortly after the onset of daytime Joule heating, Planet. Space Sci., 22, 1625–1636, 1974b

  • Bencze, P., I. Almár, and E. Illés-Almár, Ring current heating of the low latitude thermosphere connected with geomagnetic disturbances, Adv. Space Res., 13 , No. 1, 303–306, 1993

  • Berger, C., and F. Barlier, Asymmetrical structure in the thermosphere during magnetic storms as deduced from the CACTUS accelerometer data, Adv. Space Res., 1 , No. 12, 231–235, 1981a

  • Berger, C., and F. Barlier, Response of the equatorial thermosphere to magnetic activity analysed with accelerometer total density data. Asymmetrical structure, J. Atmos. Terr. Phys., 43, 121–133, 1981b

  • Berger, C., F. Barlier, and M. Ill, Diurnal variations of the response of the equatorial thermosphere to geomagnetic activity, Phys. Scripta, 37, 427–431, 1988a

  • Berger, C., M. Ill, and F. Barlier, Reassessment of the thermospheric response to geomagnetic activity at low latitudes, Ann. Geophys., 6, 541–558, 1988b

  • Berger, C., R. Biancale, M. Ill, and F. Barlier, Improvement of the empirical thermospheric model DTM: DTM94 - a comparative review of various temporal variations and prospects in space geodesy applications, J. Geodesy, 72, 161–178, 1998

  • Blum, P.W., Comments on Stubbe’s deviations from the barometric law, Planet. Space Sci., 22, 183–186, 1974

  • Blum, P., and G.W. Prölss, Changes in thermospheric density caused by turbulence variations, Adv. Space Res., 7 , No. 10, 247–254, 1987

  • Blum, P., I. Harris, and W. Priester, The physics of the neutral upper atmosphere, in COSPAR International Reference Atmosphere (CIRA) 1972, 399–444, Akademie Verlag, Berlin, 1972

  • Blum, P.W., C. Wulf-Mathies, and H. Trinks, Interpretation of local thermospheric disturbances of composition observed by ESRO 4 in the polar region, Space Res., 15, 209–214, 1975

  • Bowman, B.R., W.K. Tobiska, F.A.Marcos, and C.Valladares, The JB2006 empirical thermospheric density model, J. Atmos. Solar-Terr. Phys., 70, 774-793, 2008a

  • Bowman, B.R., W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, and W.J. Burke, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, Proc. AIAA/AAS Astrodynamics Specialist Conference 18-21 August 2008, Honolulu, Hawaii, AIAA2008-6438, 1-19, 2008b

  • Brinton, H.C., and H.G. Mayr, Thermospheric hydrogen: absolute densities and temporal variations deduced from in situ measurements, Space Res., 12, 751–764, 1972

  • Broglio, L., Diurnal minimum and geomagnetic storms effect on the density of the equatorial atmosphere obtained from San Marco II satellite, Space Res., 10, 493–504, 1970

  • Brown, R.R., Auroral enhancement of atomic nitrogen, J. Atmos. Terr. Phys., 30, 55–61, 1968

  • Bruinsma, S.L., and J.M. Forbes, Global observation of traveling atmospheric disturbances (TADs) in the thermosphere, Geophys. Res. Lett., 34, L14103, doi:10.1029/2007GL030243, 2007

  • Bruinsma, S.L., and J.M. Forbes, Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43, 369–376, 2009

  • Bruinsma, S.L., and J.M. Forbes, Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data, J. Atmos. Solar-Terr. Phys., 72, 1057–1066, 2010

  • Bruinsma, S., G. Thuillier, and F. Barlier, The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties, J. Atmos. Solar-Terr. Phys., 65, 1053–1070, 2003

  • Bruinsma, S., J.M. Forbes, R.S. Nerem, and X. Zhang, Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, doi:10.1029/2005JA011284, 2006

  • Buonsanto, M.J., Y.-K. Tung, and D.P. Sipler, Neutral atomic oxygen density from nighttime radar and optical wind measurements at Millstone Hill, J. Geophys. Res., 97, 8673–8679, 1992

  • Burke, W.J., Storm time energy budgets of the global thermosphere, in Midlatitude Ionospheric Dynamics and Disturbances (P.M. Kintner et al., eds.), 235–245, AGU monograph 181, American Geophys. Union, Washington/DC, 2008

  • Burke, W.J., C.Y. Huang, F.A. Marcos, and J.O. Wise, Interplanetary control of thermospheric densities during large magnetic storms, J. Atmos. Solar-Terr. Phys., 69, 279–287, 2007

  • Burke, W.J., C.Y. Huang, and R.D. Sharma, Stormtime dynamics of the global thermosphere and equatorial ionosphere, Ann. Geophys., 27, 2035–2044, 2009a

  • Burke, W.J., C.S. Lin, M.P. Hagan, C.Y. Huang, D.R. Weimer, J.O. Wise, L.C. Gentile, and F.A. Marcos, Storm time global thermosphere: A driven-dissipative thermodynamic system, J. Geophys. Res., 114, A06306, doi:10.1029/2008JA013848, 2009b

  • Burke, W.J., L.C. Gentile, and M.P. Hagan, Thermospheric heating by high-speed streams in the solar wind, J. Geophys. Res., 115, A06318, doi:10.1029/2009JA014585, 2010a

  • Burke, W.J., C.Y. Huang, D.R. Weimer, J.O. Wise, G.R. Wilson, C.S. Lin, and F.A. Marcos, Energy and power requirements of the global thermosphere during the magnetic storm of November 10, 2004, J. Atmos. Solar-Terr. Phys., 72, 309–318, 2010b

  • Burns, A.G., and T.L. Killeen, Changes of neutral composition in the thermosphere, Adv. Astronaut. Sci., 3, 2295–2312, 1992a

  • Burns, A.G., and T.L. Killeen, The equatorial neutral thermospheric response to geomagnetic forcing, Geophys. Res. Lett., 19, 977–980, 1992b

  • Burns, A.G., T.L. Killeen, and R.G. Roble, Processes responsible for the compositional structure of the thermosphere, J. Geophys. Res., 94, 3670–3686, 1989a

  • Burns, A.G., T.L. Killeen, G. Crowley, B.A. Emery, and R.G. Roble, On the mechanisms responsible for high-latitude thermospheric composition variations during the recovery phase of a geomagnetic storm, J. Geophys. Res., 94, 16961–16968, 1989b

  • Burns, A.G., T.L. Killeen, and R.G. Roble, A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm, J. Geophys. Res., 96, 14153–14167, 1991

  • Burns, A.G., T.L. Killeen, and R.G. Roble, Thermospheric composition changes seen during a geomagnetic storm, Adv. Space Res., 12 , No. 10, 253–256, 1992a

  • Burns, A.G., T.L. Killeen, and R.G. Roble, Thermospheric heating away from the auroral oval during geomagnetic storms, Can. J. Phys., 70, 544–552, 1992b

  • Burns, A.G., T.L. Killeen, G.R. Carignan, and R.G. Roble, Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms, J. Geophys. Res., 100, 14661–14671, 1995a

  • Burns, A.G., T.L. Killeen, W. Deng, and G.R. Carignan, Geomagnetic storm effects in the low-to middle-latitude upper thermosphere, J. Geophys. Res., 100, 14673–14691, 1995b

  • Burns, A.G., T.L. Killeen, W. Wang, and R.G. Roble, The solar-cycle-dependent response of the thermosphere to geomagnetic storms, J. Atmos. Solar-Terr. Phys., 66, 1–14, 2004a

  • Burns, A.G., W. Wang, T.L. Killeen, and S.C. Solomon, A "tongue” of neutral composition, J. Atmos. Solar-Terr. Phys., 66, 1457–1468, 2004b

  • Burns, A.G., W. Wang, T.L. Killeen, S.C. Solomon, and M. Wiltberger, Vertical variations in the N 2 mass mixing ratio during a thermospheric storm that have been simulated using a coupled magnetosphere-ionosphere-thermosphere model, J. Geophys. Res., 111, A11309, doi:10.1029/2006JA011746, 2006

  • Burns, A.G., S.C. Solomon, W. Wang, and T.L. Killeen, The ionospheric and thermospheric response to CMEs: Challenges and successes, J. Atmos. Solar-Terr. Phys., 69, 77–85, 2007

  • Burnside, R.G., C.A. Tepley, M.P. Sulzer, T.J. Fuller-Rowell, D.G. Torr, and R.G. Roble, The neutral thermosphere at Arecibo during geomagnetic storms, J. Geophys. Res., 96, 1289–1301, 1991

  • Burrage, M.D., V.J. Abreu, N. Orsini, C.G. Fesen, and R.G. Roble, Geomagnetic activity effects on the equatorial neutral thermosphere, J. Geophys. Res., 97, 4177–4187, 1992

  • Carignan, G.R., Thermospheric composition, Rev. Geophys. Space Phys., 13, 885–887, 1975

  • Carignan, G.R., T. Dachev, A.E. Hedin, C.A. Reber, and N.W. Spencer, Neutral composition in the polar thermosphere: Observations made on Dynamics Explorer, Geophys. Res. Lett., 9, 949–952, 1982

  • Carlson, H.C., Role of neutral atmospheric dynamics in cusp density and ionospheric patch formation, Geophys. Res. Lett., 34, L13101, doi:10.1029/2007GL029316, 2007

  • Carter, V.L., B.K. Ching, and D.D. Elliott, Atmospheric density above 158 kilometers inferred from magnetron and drag data from the satellite OV1- 15 (1968-059A), J. Geophys. Res., 74, 5083–5091, 1969

  • Carver, J.H., L.A. Davis, B.H. Horton, and M. Ilyas, Ultraviolet extinction measurements of molecular oxygen density, J. Geophys. Res., 83, 4377–4380, 1978

  • Caspers, T., and G.W. Prölss, Thermospheric density cells at high latitudes, Adv. Space Res., 24 , No. 11, 1433–1437, 1999

  • Champion, K.S.W., The properties of the neutral atmosphere, Space Res., 12, 529–563, 1972

  • Chandra, S., and J.R. Herman, F-region ionization and heating during magnetic storms, Planet. Space Sci., 17, 841–851, 1969

  • Chandra, S., and B.V. Krishnamurthy, Solar and geomagnetic effects on upper atmospheric temperature, Nature, 214, 769–772, 1967

  • Chandra, S., and B.V. Krishnamurthy, The response of the upper atmospheric temperature to changes in solar EUV radiation and geomagnetic activity, Planet. Space Sci., 16, 231–242, 1968

  • Chandra, S., and N.W. Spencer, Exospheric temperature inferred from the Aeros-A neutral composition measurement, J. Geophys. Res., 80, 3615–3621, 1975

  • Chandra, S., and N.W. Spencer, Thermospheric storms and related ionospheric effects, J. Geophys. Res., 81, 5018–5026, 1976

  • Chandra, S., and P. Stubbe, Ion and neutral composition changes in the thermospheric region during magnetic storms, Planet. Space Sci., 19, 491–502, 1971

  • Chandra, S., N.W. Spencer, D. Krankowsky, and P. Lämmerzahl, A comparison of measured and inferred temperatures from AEROS B, Geophys. Res. Lett., 3, 718–720, 1976

  • Chang, C.A., and J.-P. St.-Maurice, Two-dimensional high-latitude thermospheric modeling: a comparison between moderate and extremely disturbed conditions, Can. J. Phys., 69, 1007–1031, 1991

  • Chepurnoy, V.N., and G.A. Charina, Change in the acceleration of artificial satellites during enhanced geomagnetic activity, Geomag. Aeron., 15, 667–668, 1975

  • Ching, B.K., Atmospheric density and rotation below 195 km from a high resolution drag analysis of the satellite OV1-15 (1986-059A), J. Geophys. Res., 76, 197–201, 1971

  • Ching, B.K., Density variations and atmospheric rotation below 200 km from the drag on the satellite OV1-15, Space Res., 12, 841–846, 1972

  • Christensen, A.B., J.H. Hecht, R.L. Walterscheid, M.F. Larsen, and W.E. Sharp, Depletion of oxygen in aurora: Evidence for a local mechanism, J. Geophys. Res., 102, 22273–22277, 1997

  • Christensen, A.B., L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.-I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, and Y. Zhang, Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108, A12, 1451, doi:10.1029/2003JA009918, 2003

  • Cleary, D.D., Daytime high-latitude rocket observations of the NO γ,  δ, and ε bands, J. Geophys. Res, 91, 11337–11344, 1986

  • Clemmons, J.H., J.H. Hecht, D.R. Salem, and D.J. Strickland, Thermospheric density in the Earth’s magnetic cusp as observed by the Streak mission, Geophys. Res. Lett., 35, L24103, doi:10.1029/2008GL035972, 2008

  • Codrescu, M.V., T.J. Fuller-Rowell, and I.S. Kutiev, Modeling the F layer during specific geomagnetic storms, J. Geophys. Res., 102, 14315–14329, 1997

  • Conway, R.R., R.R. Meier, and R.E. Huffman, Satellite observations of the OI 1304, 1356 and 1641 Å dayglow and the abundance of atomic oxygen in the thermosphere, Planet. Space Sci., 36, 963–973, 1988

  • Cook, G.E., Variations in exospheric density during 1967-68, as revealed by Echo 2, Planet. Space Sci., 18, 387–394, 1970

  • Craven, J.D., A.C. Nicholas, L.A. Frank, D.J. Strickland, and T.J. Immel, Variations in the FUV dayglow after intense auroral activity, Geophys. Res. Lett., 21, 2793–2796, 1994

  • Cravens, T.E., The global distribution of nitric oxide at 200 km, J. Geophys. Res., 86, 5710–5714, 1981

  • Cravens, T.E., and T.L. Killeen, Longitudinally asymmetric transport of nitric oxide in the E-region, Planet. Space Sci., 36, 11–19, 1988

  • Cravens, T.E., and A.I. Stewart, Global morphology of nitric oxide in the lower E-region, J. Geophys. Res., 83, 2446–2456, 1978

  • Cravens, T.E., J.-C. Gérard, A.I. Stewart, and D.W. Rusch, The latitudinal gradient of nitric oxide in the thermosphere, J. Geophys. Res., 84, 2675–2680, 1979

  • Cravens, T.E., J.-C. Gérard, M. LeCompte, A.I. Stewart, and D.W. Rusch, The global distribution of nitric oxide in the thermosphere as determined by the Atmosphere Explorer D satellite, J. Geophys. Res., 90, 9862–9870, 1985

  • Crowley, G., and R.R. Meier, Disturbed O/N 2 ratios and their transport to middle and low latitudes, in Midlatitude Ionospheric Dynamics and Disturbances (P.M. Kintner et al., eds.), 221–234, AGU monograph 181, American Geophys. Union, Washington/DC, 2008

  • Crowley, G., B.A. Emery, R.G. Roble, H.C. Carlson Jr., and D.J. Knipp, Thermospheric dynamics during September 18-19, 1984 1.Model simulations, J. Geophys. Res., 94, 16925–16944, 1989a

  • Crowley, G., B.A. Emery, R.G. Roble, H.C. Carlson Jr., J.E. Salah, V.B. Wickwar, K.L. Miller, W.L. Oliver, R.G. Burnside, and F.A. Marcos, Thermospheric dynamics during September 18-19, 1984 2. Validation of the NCAR thermospheric general circulation model, J. Geophys. Res., 94, 16945–16959, 1989b

  • Crowley, G., J. Schoendorf, R.G. Roble, and F.A. Marcos, Satellite observations of neutral density cells in the lower thermosphere at high latitudes, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (R.M. Johnson, and T.L. Killeen, eds.), 339–348, AGU Geophysical Monograph 87, American Geophysical Union, Washington/DC, 1995

  • Crowley, G., J. Schoendorf, R.G. Roble, and F.A. Marcos, Cellular structures in the high-latitude thermosphere, J. Geophys. Res., 101, 211–223, 1996a

  • Crowley, G., J. Schoendorf, R.G. Roble, and F.A. Marcos, Neutral density cells in the lower thermosphere at high latitudes, Adv. Space Res., 18 , No. 3, 69–74, 1996b

  • Crowley, G., A. Ridley, D. Winningham, R. Frahm, J. Sharber, and J. Russel III, Nitric oxide variations in the mesosphere and lower thermosphere during the November 1993 storm period, J. Geophys. Res, 103, 26395–26407, 1998

  • Crowley, G., C.L. Hackert, R.R. Meier, D.J. Strickland, L.J. Paxton, X. Pi, A. Mannucci, A.B. Christensen, D. Morrison, G.S. Bust, R.G. Roble, N. Curtis, and G. Wene, Global thermosphere-ionosphere response to onset of 20 November 2003 magnetic storm, J. Geophys. Res, 111, A10S18, doi:10.1029/2005JA011518, 2006a

  • Crowley, G., T.J. Immel, C.L. Hackert, J. Craven, and R.G. Roble, Effect of IMF B y on thermospheric composition at high and middle latitudes: 1. Numerical experiments, J. Geophys. Res., 111, A10311, doi:10.1029/2005JA011371, 2006b

  • Crowley, G., A. Reynolds, J.P. Thayer, J. Lei, L.J. Paxton, A.B. Christensen, Y. Zhang, R.R. Meier, and D.J. Strickland, Periodic modulations in thermospheric composition by solar wind high speed streams, Geophys. Res. Lett., 35, L21106, doi:10.1029/2008GL035745, 2008

  • Crowley, G., D.J. Knipp, K.A. Drake, J. Lei, E. Sutton, and H. Lühr, Thermospheric density enhancements in the dayside cusp region during strong B Y conditions, Geophys. Res. Lett., 37, L07110, doi:10.1029/2009GL042143, 2010

  • Daniell Jr., R.E., and D.J. Strickland, Modeling negative ionospheric storm effects caused by thermospheric disturbances observed in satellite UV images, J. Geophys. Res., 106, 30307–30313, 2001

  • Danilov, A.D., L.D. Morozova, Tc. Dachev, and I. Kutiev, Positive phase of ionospheric storms and its connection with the dayside cusp, Adv. Space Res., 7 , No. 8, 81–88, 1987

  • Danilov, A.D., Ts. Dachev, I. Kutiyev, and L.D. Belik, Relation between the positive phase of an ionospheric storm and the circulation and composition of the polar thermosphere: 1. Analysis of the longitudinal variations of the neutral composition, Geomag. Aeron., 29, 747–749, 1989a

  • Danilov, A.D., Ts. Dachev, I. Kutiyev, and L.D. Belik, Relation between the positive phase of an ionospheric storm and the circulation and composition of the polar thermosphere: 2. Comparison of data on neutral composition with ionospheric observations, Geomag. Aeron., 29, 750–753, 1989b

  • Demars, H.G., and R.W. Schunk, Effect of the theta aurora on the polar thermosphere, J. Atmos. Solar-Terr. Phys., 67, 489–499, 2005

  • Demars, H.G., and R.W. Schunk, Thermospheric response to ion heating in the dayside cusp, J. Atmos. Solar-Terr. Phys., 69, 649–660, 2007

  • Deng, W., and M. Förster, Changes of thermospheric composition and the response of the ionosphere during the magnetic storm of January, 1974, Gerl. Beitr. Geophys., 98, 240–250, 1989

  • Deng, Y., and A.J. Ridley, Role of vertical ion convection in the high-latitude ionospheric plasma distribution, J. Geophys. Res., 111, A09314, doi:10.1029/2006JA011637, 2006

  • DeVries, L.L., Analysis and interpretation of density data from the low-g accelerometer calibration system (Logacs), Space Res., 12, 777–789, 1972a

  • DeVries, L.L., Structure and motion of the thermosphere shown by density data from the low-g accelerometer calibration system (Logacs), Space Res., 12, 867–879, 1972b

  • DeVries, L.L., E.W. Friday, and L.C. Jones, Analysis of density data reduced from low-altitude, high resolution satellite tracking data, Space Res., 7, 1173–1182, 1967

  • DeVries, L.L., L. Schusterman, and R.W. Bruce, Atmospheric density variations at 140 kilometers deduced from precise satellite radar tracking data, J. Geophys. Res., 77, 1905–1913, 1972

  • Dobbin, A.L., and A.D. Aylward, A three-dimensional modelling study of the processes leading to mid latitude nitric oxide increases in the lower thermosphere following periods of high geomagnetic activity, Adv. Space Res., 42, 1576–1585, 2008

  • Drob, D.P., R.R. Meier, J.M. Picone, D.J. Strickland, R.J. Cox, and A.C. Nicholas, Atomic oxygen in the thermosphere during the July 13, 1982, solar proton event deduced from far ultraviolet images, J. Geophys. Res., 104, 4267–4278, 1999

  • Emery, B.A., R.G. Roble, E.C. Ridley, T.L. Killeen, M.H. Rees, J.D. Winningham, G.R. Carignan, P.B. Hays, R.A. Heelis, W.B. Hanson, N.W. Spencer, L.H. Brace, and M. Sugiura, Thermospheric and ionospheric structure of the southern hemisphere polar cap on October 21, 1981, as determined from Dynamics Explorer 2 satellite data, J. Geophys. Res., 90, 6553–6566, 1985

  • Emery, B.A., G. Lu, E.P. Szuszczewicz, A.D. Richmond, R.G. Roble, P.G. Richards, K.L. Miller, R. Niciejewski, D.S. Evans, F.J. Rich, W.F. Denig, D.L. Chenette, P. Wilkinson, S. Pulinets, K.F. O’Loughlin, R. Hanbaba, M. Abdu, P. Jiao, K. Igarashi, and B.M. Reddy, Assimilative mapping of ionospheric electrodynamics in the thermosphere-ionosphere general circulation model comparisons with global ionospheric and thermospheric observations during the GEM/SUNDIAL period of 28-29 March 1992, J. Geophys. Res., 101, 26681–26696, 1996

  • Emery, B.A., C. Lathuillere, P.G. Richards, R.G. Roble, M.J. Buonsanto, D.J. Knipp, P. Wilkinson, D.P. Sipler, and R. Niciejewski, Time dependent thermospheric neutral response to the 2-11 November 1993 storm period, J. Atmos. Solar-Terr. Phys., 61, 329–350, 1999

  • Engebretson, M.J., and K. Mauersberger, The response of thermospheric atomic nitrogen to magnetic storms, J. Geophys. Res., 88, 6331–6338, 1983

  • Engebretson, M.J., and J.T. Nelson, Atomic nitrogen densities near the polar cusp, J. Geophys. Res., 90, 8407–8416, 1985

  • Engebretson, M.J., K. Mauersberger, D.C. Kayser, W.E. Potter, and N.A. Nier, Empirical model of atomic nitrogen in the upper thermosphere, J. Geophys. Res., 82, 461–471, 1977

  • Engebretson, M.J., J.A. DeFreese, and K. Mauersberger, Diurnal, seasonal, and nighttime variations of atomic nitrogen in the equatorial thermosphere, J. Geophys. Res., 85, 2165–2170, 1980

  • Fang, X., A.J. Ridley, M.W. Liemohn, J.U. Kozyra, and D.S. Evans, Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 3. Impact on the ionosphere and thermosphere, J. Geophys. Res., 112, A07310, doi:10.1029/2006JA012144, 2007

  • Fesen, C.G., and R.G. Roble, Database of theoretical thermosphere/ionosphere predictions, J. Geophys. Res., 99, 21409–21410, 1994

  • Fesen, C.G., B.A. Emery, M.J. Buonsanto, Q.H. Zhou, and M.P. Sulzer, Simulations of the F region during the January 1993 10-day campaign, J. Geophys. Res., 102, 7249–7265, 1997

  • Field, P.R., H. Rishbeth, R.J. Moffett, D.W. Idenden, T.J. Fuller-Rowell, G.H. Millward, and A.D. Aylward, Modelling composition changes in F-layer storms, J. Atmos. Solar-Terr. Phys., 60, 523–543, 1998

  • Forbes, J.M., and H.B. Garrett, Variations in the atmospheric neutral density at 145 km, Planet. Space Sci., 23, 1399–1404, 1975

  • Forbes, J.M., and F.A. Marcos, Thermospheric density variations associated with auroral electrojet activity, J. Geophys. Res., 78, 3841–3847, 1973

  • Forbes, J.M., F.A. Marcos, and K.S.W. Champion, Lower thermosphere response to geomagnetic activity, Space Res., 18, 173–176, 1978

  • Forbes, J.M., R.G. Roble, and F.A. Marcos, Thermospheric dynamics during the March 22, 1979, magnetic storm 2. Comparisons of model predictions with observations, J. Geophys. Res., 92, 6069–6081, 1987

  • Forbes, J.M., R.G. Roble, and F.A. Marcos, Magnetic activity dependence of high-latitude thermospheric winds and densities below 200 km, J. Geophys. Res., 98, 13693–13702, 1993

  • Forbes, J.M., R. Gonzalez, F.A. Marcos, D. Revelle, and H. Parish, Magnetic storm response of lower thermosphere density, J. Geophys. Res., 101, 2313–2319, 1996

  • Forbes, J.M., G. Lu, S. Bruinsma, S. Nerem, and X. Zhang, Thermosphere density variations due to the 15-24 April 2002 solar events from CHAMP/STAR accelerometer measurements, J. Geophys. Res., 110, A12S27, doi:10.1029/2004JA010856, 2005

  • Förster, M., V. Mikhailov, A. Mikhailov, and J. Smilauer, A theoretical interpretation of ion composition measured on board the ‘Active’ satellite in the European sector during April 10-12, 1990 geomagnetic storm, Ann. Geophys., 13, 608–616, 1995

  • Förster, M., A.A. Namgaladze, and R.Y. Yurik, Thermospheric composition changes deduced from geomagnetic storm modeling, Geophys. Res. Lett., 26, 2625–2628, 1999

  • Fujiwara, H., and Y. Miyoshi, Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model, Geophys. Res. Lett., 33, L20108, doi:10.1029/2006GL027103, 2006

  • Fuller-Rowell, T.J., A two-dimensional, high-resolution, nested-grid model of the thermosphere 1. Neutral response to an electric field “spike”, J. Geophys. Res., 89, 2971–2990, 1984

  • Fuller-Rowell, T.J., A two-dimensional, high-resolution, nested-grid model of the thermosphere 2. Response of the thermosphere to narrow and broad electrodynamic features, J. Geophys. Res., 90, 6567–6586, 1985

  • Fuller-Rowell, T.J., D. Rees, S. Quegan, R.J. Moffett, and G.J. Bailey, Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere-thermosphere model, J. Geophys. Res., 92, 7744–7748, 1987

  • Fuller-Rowell, T.J., D. Rees, B.A. Tinsley, H. Rishbeth, A.S. Rodger, and S. Quegan, Modelling the response of the thermosphere and ionosphere to geomagnetic storms: effects of a mid-latitude heat source, Adv. Space Res., 10 , No. 6, 215–223, 1990

  • Fuller-Rowell, T.J., D. Rees, H. Rishbeth, A.G. Burns, T.L. Killeen, and R.G. Roble, Modelling of composition changes during F-region storms: a reassessment, J. Atmos. Terr. Phys., 53, 541–550, 1991

  • Fuller-Rowell, T.J., M.V. Codrescu, R.J. Moffett, , and S. Quegan, Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893–3914, 1994

  • Fuller-Rowell, T.J., M.V. Codrescu, H. Rishbeth, R.J. Moffett, and S. Quegan, On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101, 2343–2353, 1996

  • Fuller-Rowell, T.J., M.V. Codrescu, B.G. Fejer, W. Borer, F. Marcos, and D.N. Anderson, Dynamics of the low-latitude thermosphere: quiet and disturbed conditions, J. Atmos. Solar-Terr. Phys., 59, 1533–1540, 1997a

  • Fuller-Rowell, T.J., M.V. Codrescu, R.G. Roble, and A.D. Richmond, How does the thermosphere and ionosphere react to a geomagnetic storm ?, in Magnetic Storms, 203–225, Geophys. Monogr. 98, 1997b

  • Fuller-Rowell, T.J., T. Matsuo, M.V. Codrescu, and F.A. Marcos, Modeling thermospheric neutral density waves and holes in response to high latitude forcing, Adv. Space Res., 24 , No. 11, 1447–1458, 1999

  • Fuller-Rowell, T.J., M.V. Codrescu, C.F. Minter, and D. Strickland, Application of thermospheric general circulation models for space weather operations, Adv. Space Res., 37, 401–408, 2006

  • Galand, M., R.G. Roble, and D. Lummerzheim, Ionization by energetic protons in Thermosphere-Ionosphere Electrodynamics General Circulation Model, J. Geophys. Res., 104, 27973–27989, 1999

  • Gardner, L.C., and R.W. Schunk, Generation of traveling atmospheric disturbances during pulsating geomagnetic storms, J. Geophys. Res., 115, A08314, doi:10.1029/2009JA015129, 2010

  • Gérard, J.-C., Thermospheric odd nitrogen, Planet. Space Sci., 40, 337–353, 1992

  • Gérard, J.-C., and C.A. Barth, High-latitude nitric oxide in the lower thermosphere, J. Geophys. Res., 82, 674–680, 1977

  • Gérard, J.-C., and C.E. Noël, AE-D measurements of the NO geomagnetic latitudinal distribution and contamination by N +(5 S) emission, J. Geophys. Res., 91, 10136–10140, 1986

  • Gérard, J.-C., and R.G. Roble, Transport of aurorally produced N(D) by winds in the high latitude thermosphere, Planet. Space Sci., 30, 1091–1105, 1982

  • Gérard, J.-C., and D.W. Rusch, The auroral ionosphere: Comparison of a time-dependent model with composition measurements, J. Geophys. Res., 84, 4335–4340, 1979

  • Gérard, J.-C., R.G. Roble, D.W. Rusch, and A.I. Stewart, The global distribution of thermospheric odd nitrogen for solstice conditions during solar cycle minimum, J. Geophys. Res., 89, 1725–1738, 1984

  • Goncharenko, L., J. Salah, G. Crowley, L.J. Paxton, Y. Zhang, A. Coster, W. Rideout, C. Huang, S. Zhang, B. Reinisch, and V. Taran, Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF B y , J. Geophys. Res., 111, A03303, doi:10.1029/2004JA010683, 2006

  • Goncharenko, L.P., J.C. Foster, A.J. Coster, C. Huang, N. Aponte, and L.J. Paxton, Observations of a positive storm phase on September 10, 2005, J. Atmos. Solar-Terr. Phys., 69, 1253–1272, 2007

  • Gross, S.H., Unusual heating events at about 250 km altitude at very low latitudes seen bei AE-E, J. Atmos. Terr. Phys., 47, 941–944, 1985

  • Groves, G.V., Correlation of upper atmosphere air density with geomagnetic activity, November 1960, Space Res., 2, 751–753, 1961

  • Groves, G.V., Atmospheric densities obtained from satellite orbits, Proc. First Int. Symp. Rocket Sat. Meteorology, (H. Wexler, and J.E. Caskey Jr., eds), 422–436, North–Holland Publ. Comp., Amsterdam, 1963

  • Hanuise, C., J.C. Cerisier, F. Auchère, K. Bocchialini, S. Bruinsma, N. Cornilleau-Wehrlin, N. Jakowski, C. Lathuillère, M. Menvielle, J.-J. Valette, N. Vilmer, J. Watermann, and P. Yaya, From the sun to the earth: impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere, Ann. Geophys., 24, 129–151, 2006

  • Hays, P.B., and R.G. Roble, Stellar occultation measurements of molecular oxygen in the lower thermosphere, Planet. Space Sci., 21, 339–348, 1973

  • Hays, P.B., R.A. Jones, and M.H. Rees, Auroral heating and the composition of the neutral atmosphere, Planet. Space Sci., 21, 559–573, 1973

  • Hecht, J.H., A.B. Christensen, D.J. Strickland, and R.R. Meier, Deducing composition and incident electron spectra from ground-based auroral optical measurements: variations in oxygen density, J. Geophys. Res., 94, 13553–13563, 1989

  • Hecht, J.H., D.J. Strickland, A.B. Christensen, D.C. Kayser, and R.L. Walterscheid, Lower thermospheric composition changes derived from optical and radar data taken at Sondre Stromfjord during the great magnetic storm of February 1986, J. Geophys. Res., 96, 5757–5776, 1991

  • Hecht, J.H., A.B. Christensen, D.J. Gutierrez, D.C. Kayser, W.E. Sharp, J.R. Sharber, J.D. Winningham, R.A. Frahm, D.J. Strickland, and D.J. McEwen, Observations of the neutral atmosphere between 100 and 200 km using ARIA rocket-borne and ground-based instruments, J. Geophys. Res., 100, 17285–17298, 1995

  • Hecht, J.H., A.B. Christensen, D.J. Strickland, T. Majeed, R.L. Gattinger, and A.V. Jones, A comparison between auroral particle characteristics and atmospheric composition inferred from analyzing optical emission measurements alone and in combination with incoherent scatter radar measurements, J. Geophys. Res., 104, 33-44, 1999

  • Hecht, J.H., D.L. McKenzie, A.B. Christensen, D.J. Strickland, J.P. Thayer, and J. Watermann, Simultaneous observations of lower thermospheric composition change during moderate auroral activity from Kangerlussuaq and Narsarsuaq, Greenland, J. Geophys. Res., 105, 27109–27118, 2000

  • Hecht, J.H., D.J. Strickland, and M.G. Conde, The application of ground-based optical techniques for inferring electron energy deposition and composition change during auroral precipitation events, J. Atmos. Solar-Terr. Phys., 68, 1502–1519, 2006

  • Hecht, J.H., T. Mulligan, D.J. Strickland, A.J. Kochenash, Y. Murayama, Y.-M. Tanaka, D.S. Evans, M.G. Conde, E.F. Donovan, F.J. Rich, and D. Morrison, Satellite and ground-based observations of auroral energy deposition and the effects on thermospheric composition during large geomagnetic storms: 1. Great geomagnetic storm of 20 November 2003, J. Geophys. Res., 113, A01310, doi:10.1029/2007JA012365, 2008

  • Hedin, A.E., A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83, J. Geophys. Res., 88, 10170–10188, 1983

  • Hedin, A.E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987

  • Hedin, A.E., and G.R. Carignan, Morphology of thermospheric composition variations in the quiet polar thermosphere from Dynamics Explorer measurements, J. Geophys. Res., 90, 5269–5277, 1985

  • Hedin, A.E., and C.A. Reber, Longitudinal variations of thermospheric composition indicating magnetic control of polar heat input, J. Geophys. Res., 77, 2871–2879, 1972

  • Hedin, A.E., H.G. Mayr, C.A. Reber, N.W. Spencer, and G.R. Carignan, Empirical model of global thermospheric temperature and composition based on data from the Ogo 6 quadrupole mass spectrometer, J. Geophys. Res., 79, 215–225, 1974

  • Hedin, A.E., J.E. Salah, J.V. Evans, C.A. Reber, G.P. Newton, N.W. Spencer, D.C. Kayser, D. Alcaydé, P. Bauer, L. Cogger, and J.P. McClure, A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N 2 density and temperature, J. Geophys. Res., 82, 2139–2147, 1977a

  • Hedin, A.E., C.A. Reber, G.P. Newton, N.W. Spencer, H.C. Brinton, H.G. Mayr, and W.E. Potter, A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition, J. Geophys. Res., 82, 2148–2156, 1977b

  • Hedin, A.E., P. Bauer, H.G. Mayr, G.R. Carignan, L.H. Brace, H.C. Brinton, A.D. Parks, and D.T. Pelz, Observations of neutral composition and related ionospheric variations during a magnetic storm in February 1974, J. Geophys. Res., 82, 3183–3189, 1977c

  • Hedin, A.E., C.A. Reber, N.W. Spencer, H.C. Brinton, and D.C. Kayser, Global model of longitude/UT variations in thermospheric composition and temperature based on mass spectrometer data, J. Geophys. Res., 84, 1–9, 1979

  • Hedin, A.E., N.W. Spencer, H.G. Mayr, and H.S. Porter, Semiempirical modeling of thermospheric magnetic storms, J. Geophys. Res., 86, 3515–3518, 1981

  • Hei, M.A., and C.E. Valladares, The November 2004 superstorm: Comparison of low-latitude TEC observations with LLIONS model results, J. Atmos. Solar-Terr. Phys., 72, 334–343, 2010

  • Higgins, J.E., and L. Heroux, Determination of molecular oxygen density between 110 and 170 km from a 1450-Å photometer, J. Geophys. Res., 82, 3295–3298, 1977

  • Hinton, B.B., Global effect of auroral particle and joule heating in the undisturbed thermosphere, J. Geophys. Res., 83, 707–711, 1978

  • Horiuchi, G., Lower thermosphere ions in the nighttime auroral zone, Space Res., 9, 433–441, 1969

  • Horvath, I., Impact of 10 January 1997 geomagnetic storm on the nighttime Weddell Sea Anomaly: A study utilizing data provided by the TOPEX/Poseidon mission and the Defense Meteorological Satellite Program, and simulations generated by the Coupled Thermosphere/Ionosphere Plasmasphere model, J. Geophys. Res., 112, A06329, doi:10.1029/2006JA012153, 2007

  • Hyman, E., D.J. Strickland, P.S. Julienne, and D.F. Strobel, Auroral NO concentrations ?, J. Geophys. Res., 81, 4765–4769, 1976

  • Idenden, D.W., The thermospheric effects of a rapid polar cap expansion, Ann. Geophys., 16, 1380–1391, 1998

  • Illés-Almár, E., I. Almár, P. Bencze, and A. Horváth, Investigation of the thermosphere-ionosphere interaction by means of the neutral post-storm effect, Adv. Space Res., 7 , No. 8, 53–57, 1987

  • Illés-Almár, E., I. Almár, P. Bencze, and A. Horváth, On a possible ring current effect in the density of the neutral upper atmosphere, Adv. Space Res., 9 , No. 12, 205–208, 1989

  • Illés-Almár, E., I. Almár, P. Bencze, A. Horváth, N. Jakowski, and A. Jungstand, Similar behaviour of the thermosphere and the ionosphere in the recovery phase of geomagnetic disturbances, Adv. Space Res., 12 , No. 6, 175–178, 1992

  • Illés-Almár, E., I. Almár, and P. Bencze, Observational results hinting at the coupling of the thermosphere with the ionosphere/magnetosphere system and with the middle atmosphere, Adv. Space Res., 18 , No. 3, 45–48, 1996

  • Immel, T.J., J.D. Craven, and L.A. Frank, Influence of IMF B y on large-scale decreases of O column density at middle latitudes, J. Atmos. Solar-Terr. Phys., 59, 725–737, 1997

  • Immel, T.J., J.D. Craven, and A.C. Nicholas, An empirical model of the OI FUV dayglow from DE-1 images, J. Atmos. Solar-Terr. Phys., 62, 47–64, 2000

  • Immel, T.J., G. Crowley, J.D. Craven, and R.G. Roble, Dayside enhancements of thermospheric O/N 2 following magnetic storm onset, J. Geophys. Res., 106, 15471–15488, 2001

  • Immel, T.J., G. Crowley, C.L. Hackert, J.D. Craven, and R.G. Roble, Effect of IMF B y on thermospheric composition at high and middle latitudes: 2. Data comparisons, J. Geophys. Res., 111, A10312, doi:10.1029/2005JA011372, 2006

  • Immel, T.J., G. Crowley, J.M. Forbes, R.S. Nerem, and E.K. Sutton, Neutral composition and density effect in the October-November 2003 magnetic storms, in Midlatitude Ionospheric Dynamics and Disturbances (P.M. Kintner et al., eds.), 259–269, AGU monograph 181, American Geophys. Union, Washington/DC, 2008

  • Jacchia, L.G., Corpuscular radiation and the acceleration of artificial satellites, Nature, 183, 1662–1663, 1959

  • Jacchia, L.G., Satellite drag during the events of November 1960, Space Res., 2, 747–750, 1961a

  • Jacchia, L.G., A working model for the upper atmosphere, Nature, 192, 1147–1148, 1961b

  • Jacchia, L.G., Electromagnetic and corpuscular heating of the upper atmosphere, Space Res., 3, 3–18, North–Holland Publ. Comp., Amsterdam, 1963a

  • Jacchia, L.G., Variations in the earth’s upper atmosphere as revealed by satellite drag, Rev. Modern Phys., 35, 973–991, 1963b

  • Jacchia, L.G., Influence of solar activity on the Earth’s upper atmosphere, Planet. Space Sci., 12, 355–378, 1964

  • Jacchia, L.G., Atmospheric structure and its variations at heights above 200 km, in COSPAR Int. Ref. Atmosphere (CIRA) 1965, 293–313, North-Holland Publ. Com., Amsterdam, 1965a

  • Jacchia, L.G., Solar plasma velocity, exospheric temperature, and geomagnetic activity, J. Geophys. Res., 70, 4385–4386, 1965b

  • Jacchia, L.G., The temperature above the thermopause, Space Res., 5, 1152–1174, 1965c

  • Jacchia, L.G., Density variations in the heterosphere, Ann. Geophys., 22, 75–85, 1966

  • Jacchia, L.G., Properties of the upper atmosphere determined from satellite orbits, Phil. Trans. Roy. Soc., A262, 157–171, 1967

  • Jacchia, L.G., Atmospheric density variations during solar maximum and minimum, in Solar-Terrestrial Physics: Terrestrial Aspects, Ann. IQSY, 5, 323–339, MIT Press, Cambridge/Mass. and London/Engl., 1969

  • Jacchia, L.G., Recent advances in upper atmosphere structure, Space Res., 10, 367–388, 1970

  • Jacchia, L.G., Atmospheric models in the region from 110 to 2000 km, in COSPAR Int. Ref. Atmosphere (CIRA) 1972, 227–338, Akademie Verlag, Berlin, 1972

  • Jacchia, L.G., CIRA 1972, recent atmospheric models, and improvements in progress, Space Res., 19, 179–192, 1979

  • Jacchia, L.G., and J. Slowey, An analysis of the atmospheric drag of the Explorer IX satellite from precisely reduced photographic observations, Space Res., 4, 257–270, 1964a

  • Jacchia, L.G., and J. Slowey, Atmospheric heating in the auroral zones: A preliminary analysis of the atmospheric drag of the Injun 3 satellite, J. Geophys. Res., 69, 905–910, 1964b

  • Jacchia, L.G., and J. Slowey, Temperature variations in the upper atmosphere during geomagnetically quiet intervals, J. Geophys. Res., 69, 4145–4148, 1964c

  • Jacchia, L.G., J. Slowey, and F. Verniani, Geomagnetic perturbations and upper-atmosphere heating, J. Geophys. Res., 72, 1423–1434, 1967

  • Jacchia, L.G., J.W. Slowey, and U. von Zahn, Latitudinal changes of composition in the disturbed thermosphere from Esro 4 measurements, J. Geophys. Res., 81, 36–42, 1976

  • Jacchia, L.G., J.W. Slowey, and U. von Zahn, Temperature, density, and composition in the disturbed thermosphere from Esro 4 gas analyzer measurements: A global model, J. Geophys. Res., 82, 684–688, 1977

  • Jacobs, R.L., Atmospheric density derived from the drag of eleven low-altitude satellites, J. Geophys. Res., 72, 1571–1581, 1967

  • Jaeck, C., C. Meyer, J.L. Pieplu, and J. Vercheval, Variations des densites atmospheriques entre 140 et 200 km, Space Res., 10, 478–484, 1970

  • Jee, G., A.G. Burns, W. Wang, S.C. Solomon, R.W. Schunk, L. Scherliess, D.C. Thompson, J.J. Sojka, and L. Zhu, Driving the TING model with GAIM electron densities: Ionospheric effects on the thermosphere, J. Geophys. Res., 113, A03305, doi:10.1029/2007JA012580, 2008

  • Jones, R.A., and M.H. Rees, Time dependent studies of the aurora - I. ion density and composition, Planet. Space Sci., 21, 537–557, 1973

  • Jung, M.J., and G.W. Prölss, Numerical simulation of negative ionospheric storms using observed neutral composition data, J. Atmos. Terr. Phys., 40, 1347–1350, 1978

  • Karpov, I.V., V.V. Klimenko, and A.A. Namgaladze, Modeling of three-dimensional disturbances in the thermosphere and ionosphere from high-latitude thermal sources, Geomag. Aeron., 27, 681–685, 1987

  • Keating, G.M., E.J. Prior, K. Chang, J.Y. Nicholson III, and U. von Zahn, Comparison of drag and mass spectrometer measurements during small geomagnetic disturbances, Space Res., 17, 355–361, 1977

  • Kersken, H.-P., and G.W. Prölss, Recovery of the upper atmosphere from perturbations of the neutral gas composition by molecular diffusion, Ann. Geophys., 8, 377–384, 1990

  • Kersken, H.-P., G.W. Prölss, and M. Roemer, Convective transport of composition perturbations, Adv. Space Res., 12 , No. 10, 261–264, 1992

  • Killeen, T.L., P.B. Hays, G.R. Carignan, R.A. Heelis, W.B. Hanson, N.W. Spencer, and L.H. Brace, Ion-neutral coupling in the high-latitude F region: Evaluation of ion heating terms from Dynamics Explorer 2, J. Geophys. Res., 89, 7495–7508, 1984

  • Killeen, T.L., F.G. McCormac, A.G. Burns, and R.G. Roble, Thermospheric dynamics, energetics, and composition at auroral latitudes, in Auroral Physics (C.-I. Meng et al., eds.), 67–81, Cambridge UP, 1991a

  • Killeen, T.L., F.G. McCormac, A.G. Burns, J.P. Thayer, R.M. Johnson, and R.J. Niciejewski, On the dynamics and composition of the high-latitude thermosphere, J. Atmos. Terr. Phys., 53, 797–815, 1991b

  • King-Hele, D.G., and J. Hingston, Air density at heights near 190 km in 1966-67, from the orbit of Secor 6, Planet. Space Sci., 16, 675–691, 1968

  • King-Hele, D.G., and D.M.C. Walker, Air density at heights of 140-180 km, from analysis of the orbit of 1968-59A, Planet. Space Sci., 17, 1539–1556, 1969

  • King-Hele, D.G., and D.M.C. Walker, Air density at heights near 180 km in 1968 and 1969, from the orbit of 1967-31A, Planet. Space Sci., 19, 297–311, 1971a

  • King-Hele, D.G., and D.M.C. Walker, Air density at heights near 150 km in 1970, from the orbit of Cosmos 316 (1969-108A), Planet. Space Sci., 19, 1637–1651, 1971b

  • Köhnlein, W., A model of thermospheric temperature and composition, Planet. Space Sci., 28, 225–243, 1980

  • Köhnlein, W., D. Krankowsky, P. Lämmerzahl, W. Joos, and H. Volland, A thermopsheric model of the annual variations of He, N, O, N 2 and Ar from the Aeros Nims data, J. Geophys. Res., 84, 4355–4362, 1979

  • Kondo, Y., and T. Ogawa, Odd nitrogen in the lower thermosphere under auroral perturbations, J. Geomag. Geoelectr., 28, 253–282, 1976

  • Kozyra, J.U., G. Crowley, B.A. Emery, X. Fang, G. Maris, M.G. Mlynczak, R.J. Niciejewski, S.E. Palo, L.J. Paxton, C.E. Randall, P.-P. Rong, J.M. Russell III, W. Skinner, S.C. Solomon, E.R. Talaat, Q. Wu, and J.-H. Yee, Response of the upper/middle atmosphere to coronal holes and powerful high-speed solar wind streams in 2003, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, 319–340, Geophys. Monogr. 167, AGU, Washington, D.C., 2006

  • Kwak, Y.-S., A.D. Richmond, Y. Deng, J.M. Forbes, and K.-H. Kim, Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field, J. Geophys. Res., 114, A05304, doi: 10.1029/2008JA013882, 2009

  • Lathuillère, C., and M. Menvielle, Comparison of the observed and modeled low- to mid-latitude thermosphere response to magnetic activity: Effects of solar cycle and disturbance time delay, Adv. Space Res., 45, 1093-1100, 2010

  • Lathuillère, C., M. Menvielle, A. Marchaudon, and S. Bruinsma, A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes, J. Geophys. Res., 113, A07311, doi::10.1029/2007JA012991, 2008

  • Laux, U., and U. von Zahn, Longitudinal variations in thermospheric composition under geomagnetically quiet conditions, J. Geophys. Res., 84, 1942–1946, 1979

  • Lei, J., J.P. Thayer, J.M. Forbes, E.K. Sutton, and R.S. Nerem, Rotating solar coronal holes and periodic modulation of the upper atmosphere, Geophys. Res. Lett., 35, L10109, doi:10.1029/2008GL033875, 2008a

  • Lei, J., W. Wang, A.G. Burns, S.C. Solomon, A.D. Richmond, M. Wiltberger, L.P. Goncharenko, A. Coster, and B.W. Reinisch, Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase, J. Geophys. Res., 113, A01314, doi:10.1029/2007JA012807, 2008b

  • Lei, J., J.P. Thayer, A.G. Burns, G. Lu, and Y. Deng, Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm, J. Geophys. Res., 115, A05303, doi:10.1029/2009JA014754, 2010a

  • Lei, J., J.P. Thayer, and J.M. Forbes, Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly, J. Geophys. Res., 115, A08311, doi:10.1029/2009JA015177, 2010b

  • Lew, S.K., On the dynamic response of the thermosphere at low altitudes to geomagnetic disturbances, J. Geopyhs. Res., 74, 5093–5098, 1969

  • Lin, C.H., A.D. Richmond, J.Y. Liu, H.C. Yeh, L.J. Paxton, G. Lu, H.F. Tsai, and S.-Y. Su, Large-scale variations of the low-latitude ionosphere during the October - November 2003 superstorm: Observational results, J. Geophys. Res., 110, A09S28, doi:10.1029/2004JA010900, 2005

  • Liou, K., P.T. Newell, B.J. Anderson, L. Zanetti, and C.-I. Meng, Neutral composition effects on ionospheric storms at middle and low latitudes, J. Geophys. Res., 110, A05309, doi:10.1029/2004JA010840, 2005

  • Litvin, A., W.L Oliver, J.M. Picone, and M.J. Buonsanto, The upper atmosphere during June 5-11, 1991, J. Geophys. Res., 105, 12789–12796, 2000

  • Liu, H., and H. Lühr, Strong disturbance of the upper thermospheric density due to magnetic storms: Champ observations, J. Geophys. Res., 110, A09S29, doi:10.1029/2004JA010908, 2005

  • Liu, H., H. Lühr, V. Henize, and W. Köhler, Global distribution of the thermospheric total mass density derived from Champ, J. Geophys. Res., 110, A04301, doi:10.1029/2004JA010741, 2005

  • Liu, R., H. Lühr, E. Doornbos, and S.-Y. Ma, Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field, Ann. Geophys., 28, 1633–1645, 2010a

  • Liu, R., H. Lühr, and S.-Y. Ma, Storm-time related mass density anomalies in the polar cap as observed by CHAMP, Ann. Geophys., 28, 165–180, 2010b

  • Lu, G., D. Richmond, R.G. Roble, and B.A. Emery, Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study, J. Geophys. Res., 106, 24493–24504, 2001

  • Lu, G., L.P. Goncharenko, A.J. Coster, A.D. Richmond, R.G. Roble, N. Aponte, and L.J. Paxton, A data-model comparative study of ionospheric positive storm phase in the midlatitude F region, in Midlatitude Ionospheric Dynamics and Disturbances (P.M. Kintner et al., eds.), 63–75, AGU monograph 181, American Geophys. Union, Washington/DC, 2008a

  • Lu, G., L.P. Goncharenko, A.D. Richmond, R.G. Roble, and N. Aponte, A dayside ionospheric positive storm phase driven by neutral winds, J. Geophys. Res., 113, A08304, doi:10.1029/2007JA012895, 2008b

  • Lühr, H., M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt, Thermospheric up-welling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi:10.1029/2003GL019314, 2004

  • Lummerzheim, D., M.H. Rees, and G.J. Romick, The application of spectroscopic studies of the aurora to thermospheric neutral composition, Planet. Space Sci., 38, 67–78, 1990

  • Luo, M., J.M. Russell III, R.J. Cicerone, and L.L. Gordley, Analysis of selected nitric oxide observations in the lower thermosphere by HALOE on UARS, Geophys. Res. Lett., 20, 1307–1310, 1993

  • Ma, T.-Z., and R.W. Schunk, Effect of polar cap patches on the polar thermosphere, J. Geophys. Res, 100, 19701–19713, 1995

  • Ma, T.-Z., and R.W. Schunk, Effect of polar cap patches on the thermosphere for different solar activity levels, J. Atmos. Solar-Terr. Phys., 59, 1823–1829, 1997a

  • Ma, T.-Z., and R.W. Schunk, Effect of sun-aligned arcs on the polar thermosphere, J. Geophys. Res., 102, 9729–9735, 1997b

  • Ma, T.-Z., and R.W. Schunk, The effects of multiple propagating plasma patches on the polar thermosphere, J. Atmos. Solar-Terr. Phys., 63, 355–366, 2001

  • Maeda, S., T.J. Fuller-Rowell, and D.S. Evans, Zonally averaged dynamical and compositional response of the thermosphere to auroral activity during September 18-24, 1984, J. Geophys. Res., 94, 16869–16883, 1989

  • Mansilla, G.A., Thermosphere-ionosphere response at middle and high latitudes during perturbed conditions: A case study, J. Atmos. Solar-Terr. Phys., 70, 1448–1454, 2008

  • Marcos, F.A., K.S.W. Champion, and R.A. Schweinfurth, More accelerometer and orbital drag results form the Spades (OV1-15) and Cannon Ball 1 (OV1-16) satellites, Space Res., 11, 941–946, 1971

  • Marcos, F.A., H.B. Garrett, K.S.W. Champion, and J.M. Forbes, Density variations in the lower thermosphere from analysis of the AE-C accelerometer measurements, Planet. Space Sci, 25, 499–507, 1977

  • Marcos, F.A., R.G. Roble, and T.L. Killeen, Thermosphere and ionosphere dynamics during 20-30 March 1979 time period: Comparison of TIGCM calculated densities with observations, Adv. Space Res., 12 , No. 6, 93–96, 1992

  • Marov, M.Ya., and A.M. Alpherov, Structure and motion of the thermosphere deduced from satellite drag, Space Res., 12, 823–840, 1972

  • Marubashi, K., C.A. Reber, and H.A. Taylor Jr., Geomagnetic storm effects on the thermosphere and the ionosphere revealed by in situ measurements from OGO 6, Planet. Space Sci., 24, 1031–1041, 1976

  • Matsuo, T., and J.M. Forbes, Principal modes of thermospheric density variability: Empirical orthogonal function analysis of CHAMP 2001-2008 data, J. Geophys. Res., 115, A07309, doi:10.1029/2009JA015109, 2010

  • Mauersberger, K., M.J. Engebretson, D.C. Kayser, and W.E. Potter, Diurnal variation of atomic nitrogen, J. Geophys. Res., 81, 2413–2416, 1976

  • May, B.R., Molecular oxygen density in the lower thermosphere from May to November 1967, Space Res., 13, 243–248, 1973

  • May, B.R., and D.E. Miller, The correlation between air density and magnetic disturbance deduced from changes of satellite spin-rate, Planet. Space Sci, 19, 39–48, 1971

  • Mayr, H.G., and A.E. Hedin, Significance of large-scale circulation in magnetic storm characteristics with application to AE-C neutral composition data, J. Geophys. Res., 82, 1227–1234, 1977

  • Mayr, H.G., and H. Trinks, Spherical asymmetry in thermospheric magnetic storms, Planet. Space Sci., 25, 607–613, 1977

  • Mayr, H.G., and H. Volland, Magnetic storm effects in the neutral composition, Planet. Space Sci., 20, 379–393, 1972

  • Mayr, H.G., and H. Volland, Magnetic storm characteristics of the thermosphere, J. Geophys. Res., 78, 2251–2264, 1973

  • Mayr, H.G., and H. Volland, Magnetic storm dynamics of the thermosphere, J. Atmos. Terr. Phys., 36, 2025–2036, 1974

  • Mayr, H.G., I. Harris, and N.W. Spencer, Some properties of upper atmospheric dynamics, Rev. Geophys. Space Phys., 16, 539–565, 1978

  • Mayr, H.G., I. Harris, F. Varosi, and F.A. Herrero, Global excitation of wave phenomena in a dissipative multiconstituent medium 2. Impulsive perturbations in the earth’s thermosphere, J. Geophys. Res., 89, 10961–10986, 1984

  • Mayr, H.G., I. Harris, F. Varosi, F.A. Herrero, H. Volland, N.W. Spencer, A.E. Hedin, R.E. Hartle, Jr. H.A. Taylor, L.E. Wharton, and G.R. Carignan, On the structure and dynamics of the thermosphere, Adv. Space Res., 5 , No. 4, 283–288, 1985

  • Mayr, H.G., I. Harris, F.A. Herrero, and F. Varosi, Winds and composition changes in the thermosphere using the transfer function model, J. Atmos. Solar-Terr. Phys., 59, 691–709, 1997

  • Meier, R.R., and D.K. Prinz, Observations of the O I 1304-Å airglow from Ogo 4, J. Geophys. Res., 76, 4608–4620, 1971

  • Meier, R.R., G. Crowley, D.J. Strickland, A.B. Christensen, L.J. Paxton, D. Morrison, and C.L. Hackert, First look at the 20 November 2003 superstorm with TIMED/GUVI: Comparisons with a thermospheric global circulation model, J. Geophys. Res., 110, A09S41, doi:10.1029/2004JA010990, 2005

  • Mikhailov, A.V., Ionospheric F2-layer storms, Fisica de la Tierra, 12, 223-262, 2000

  • Mikhailov, A.V., and M. Förster, Day-to-day thermosphere parameter variation as deduced from Millstone Hill incoherent scatter radar observations during March 16-22, 1990 magnetic storm period, Ann. Geophys., 15, 1429–1438, 1997

  • Mikhailov, A.V., and M. Förster, Some F 2-layer effects during the January 06-11, 1997 CEDAR storm period as observed with the Millstone Hill incoherent scatter facility, J. Atmos. Solar-Terr. Phys., 61, 249–261, 1999

  • Mikhailov, A.V., and J.C. Foster, Daytime thermosphere above Millstone Hill during severe geomagnetic storms, J. Geophys. Res., 102, 17275–17282, 1997

  • Mikhailov, A.V., M. Förster, and M.G. Skoblin, Neutral gas composition changes and E × B vertical plasma drift contribution to the daytime equatorial F2-region storm effects, Ann. Geophys., 12, 226–231, 1994

  • Mikhailov, A.V., M.G. Skoblin, and M. Förster, Daytime F2-layer positive storm effect at middle and lower latitudes, Ann. Geophys., 13, 532–540, 1995

  • Mikhailov, A.V., M. Förster, and M.G. Skoblin, An estimate of the non-barometric effect in the [O] height distribution at low latitudes during magnetically disturbed periods, J. Atmos. Solar-Terr. Phys., 59, 1209–1215, 1997

  • Mikhnevich, V.V., A.I. Nazarenko, L.L. Dunaykina, and A.P. Yaichnikov, Geomagnetic disturbances and decelerations of artificial earth satellites in the atmosphere, Geomag. Aeron., 25, 525–529, 1985

  • Miller, N.J., H.G. Mayr, N.W. Spencer, L.H. Brace, and G.R. Carignan, Observations relating changes in thermospheric composition to depletions in topside ionization during the geomagnetic storm of September 1982, J. Geophys. Res., 89, 2389–2394, 1984

  • Miller, N.J., L.H. Brace, N.W. Spencer, and G.R. Carignan, DE 2 observations of disturbances in the upper atmosphere during a geomagnetic storm, J. Geophys. Res., 95, 21017–21031, 1990

  • Millward, G.H., S. Quegan, R.J. Moffett, T.J. Fuller-Rowell, and D. Rees, A modelling study of the coupled ionospheric and thermospheric response to an enhanced high-latitude electric field event, Planet. Space Sci., 41, 45–56, 1993

  • Mishin, E.V., F.A. Marcos, W.J. Burke, D.L. Cooke, C. Roth, and V.P. Petrov, Prompt thermospheric response to the 6 November 2001 magnetic storm, J. Geophys. Res., 112, A05313, doi:10.1029/2006JA011783, 2007

  • Moe, K., Absolute atmospheric densities determined from the spin and orbital decays of Explorer VI, Planet. Space Sci., 14, 1065–1075, 1966

  • Moe, K., and M.M. Moe, The high-latitude thermospheric mass density anomaly: A historical review and a semi-empirical model, J. Atmos. Solar-Terr. Phys., 70, 794–802, 2008

  • Moe, K., M.M. Moe, V.L. Carter, and Jr. M.B. Ruggera, The correlation of thermospheric densities with charged particle precipitation through the magnetospheric cleft, J. Geophys. Res., 82, 3304–3306, 1977

  • Moore, P., and D.A. Rothwell, A comparison of geomagnetic activity models using SEASAT laser range data, Planet. Space Sci., 37, 685–691, 1989

  • Müller, S., H. Lühr, and S. Rentz, Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP, Ann. Geophys., 27, 2087–2099, 2009

  • Namgaladze, A.A., M. Förster, and R.Y. Yurik, Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model, Ann. Geophys., 18, 461–477, 2000

  • Namgaladze, A.A., Yu.V. Zubova, A.N. Namgaladze, O.V. Martynenko, E.N. Doronina, L.P. Goncharenko, A. Van Eyken, V. Howells, J.P. Thayer, V.I. Taran, B. Shpynev, and Q. Zhou, Modelling of the ionosphere/thermosphere behaviour during the April 2002 magnetic storms: A comparison of the UAM results with the ISR and NRLMSISE-00 data, Adv. Space Res., 37, 380–391, 2006

  • Narcisi, R.S., and W. Swider, Ionic structure near an auroral arc, J. Geophys. Res., 81, 4770–4772, 1976

  • Newton, G.P., and D.T. Pelz, Latitudinal variations in the neutral atmospheric density, J. Geophys. Res., 74, 4169–4174, 1969

  • Newton, G.P., R. Horowitz, and W. Priester, Atmospheric densities from Explorer 17 density gages and a comparison with satellite drag data, J. Geophys. Res., 69, 4690–4692, 1964

  • Newton, G.P., R. Horowitz, and W. Priester, Atmospheric density and temperature variations from the Explorer XVII satellite and a further comparison with satellite drag, Planet. Space Sci., 13, 599–616, 1965

  • Nicholas, A.C., J.D. Craven, and L.A. Frank, A survey of large-scale variations in thermospheric oxygen column density with magnetic activity as inferred from observations of the FUV dayglow, J. Geophys. Res., 102, 4493–4510, 1997

  • Nisbet, J.S., and D.A. Glenar, Thermospheric meridional winds and atomic oxygen depletion at high latitudes, J. Geophys. Res., 82, 4685–4693, 1977

  • Nisbet, J.S., B.J. Wydra, C.A. Reber, and J.M. Luton, Global exospheric temperatures and densities under active solar conditions, Planet. Space Sci., 25, 59–69, 1977

  • Nisbet, J.S., C. Stehle, and E. Bleuler, Initial tests of an index based on AL values for modeling magnetic storm related perturbations of the thermosphere, J. Geophys. Res., 88, 2175–2180, 1983

  • Norton, R.B., and R.G. Roble, Molecular oxygen between 95 and 210 km determined from Solrad 10 occultation measurements, J. Geophys. Res., 79, 3876–3878, 1974

  • Noxon, J.F., and A.E. Johanson, Changes in thermospheric molecular oxygen abundance inferred from twilight 6300-Å airglow, Planet. Space Sci., 20, 2125–2151, 1972

  • Olson, W.P., and K. Moe, Influence of precipitating charged particles on the hight latitude thermosphere, J. Atmos. Terr. Phys., 36, 1715–1726, 1974

  • Paetzold, H.K., Über eine jährliche Variation der Dichte der höchsten Erdatmosphäre, Z. Naturforschung, 16a, 50–56, 1961

  • Paetzold, H.K., Solar activity effects in the upper atmosphere deduced from satellite observations, Space Res., 3, 28–52, 1963

  • Pallamraju, D., S. Chakrabarti, and C.E. Valladares, Magnetic storm-induced enhancement in neutral composition at low latitudes as inferred by O(1 D) dayglow measurements from Chile, Ann. Geophys., 22, 3241–3250, 2004

  • Palm, A., Atmospheric temperatures and geomagnetic disturbances, J. Geophys. Res., 72, 5569, 1967

  • Parish, H.F., G.R. Gladstone, and S. Chakrabarti, Interpretation of satellite airglow observations during the March 22, 1979, magnetic storm, using the coupled ionosphere-thermosphere model developed at University College London, J. Geophys. Res., 99, 6155–6166, 1994

  • Parker, A.E., and K.H. Stewart, Measurements of molecular oxygen in the thermosphere, J. Atmos. Terr. Phys., 34, 1223–1232, 1972

  • Paul, G., and H.J. Fahr, Geomagnetic effects in the exosphere, Space Res., 19, 239–242, 1979

  • Pawlowski, D.J., A.J. Ridley, I. Kim, and D.S. Bernstein, Global model comparison with Millstone Hill during September 2005, J. Geophys. Res., 113, A01312, doi:10.1029/2007JA012390, 2008

  • Petrinec, S.M., W.L. Imhof, C.A. Barth, K.D. Mankoff, D.N. Baker, and J.G. Luhmann, Comparisons of thermospheric high-latitude nitric oxide observations from SNOE and global auroral X-ray bremsstrahlung observations from PIXIE, J. Geophys. Res., 108, A3, doi:10.1029/2002JA009451, 2003

  • Philbrick, C.R., Satellite measurements of neutral atmospheric composition in the altitude range 150 to 450 km, Space Res., 14, 151–155, 1974

  • Philbrick, C.R., Recent satellite measurements of upper atmospheric composition, Space Res., 16, 289–295, 1976

  • Philbrick, C.R., J.P. McIsaac, and G.A. Faucher, Variations in the atmospheric composition and density during a geomagnetic storm, Space Res., 17, 349–353, 1977

  • Philbrick, C.R., M.E. Gardner, and P. Lämmerzahl, Properties of the neutral density and composition in the thermosphere, Adv. Space Res., 3 , No. 1, 95–98, 1983

  • Picone, J.M., A.E. Hedin, and D.P. Drob, NRLMSISe-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, A12, 1468, doi:10.1029/2002JA009430, 2002

  • Porter, H.S., H.G. Mayr, and A.E. Hedin, An analytic formulation for heating source memory in the thermospheric composition, J. Geophys. Res., 86, 3555–3560, 1981

  • Potter, W.E., and D.C. Kayser, In situ measurements of neon in the thermosphere, Geophys. Res. Lett., 3, 665–668, 1976

  • Potter, W.E., D.C. Kayser, and A.O. Nier, Thermospheric variations as an indicator of magnetic storm heating and circulation, Space Res., 19, 259–262, 1979a

  • Potter, W.E., D.C. Kayser, and A.O. Nier, Thermal and wind-induced variations in thermospheric molecular oxygen as measured on AE-D, J. Geophys. Res., 84, 10–16, 1979b

  • Priester, W., On the variations of the thermospheric structure, Proc. Roy. Soc., London, A288, 493–509, 1965

  • Priester, W., M. Roemer, and H. Volland, The physical behavior of the upper atmosphere deduced from satellite drag data, Space Sci. Rev., 6, 707–780, 1967

  • Prölss, G.W., Magnetic storm associated perturbations of the upper atmosphere: Recent results obtained by satellite-borne gas analyzers, Rev. Geophys. Space Phys., 18, 183–202, 1980

  • Prölss, G.W., Thermospheric signature of magnetospheric energy dissipation, Adv. Space Res., 1 , No. 12, 31–34, 1981a

  • Prölss, G.W., Latitudinal structure and extension of the polar atmospheric disturbance, J. Geophys. Res., 86, 2385–2396, 1981b

  • Prölss, G.W., Perturbation of the low-latitude upper atmosphere during magnetic substorm activity, J. Geophys. Res., 87, 5260–5266, 1982

  • Prölss, G.W., Solar wind energy dissipation in the upper atmosphere, Adv. Space Res., 3 , No. 1, 55–66, 1983

  • Prölss, G.W., Local time dependence of magnetic storm effects on the atmosphere at middle latitudes, Ann. Geophys., 2, 481–486, 1984

  • Prölss, G.W., Correlation between upper atmospheric temperature and solar wind conditions, J. Geophys. Res., 902, 11096–11100, 1985

  • Prölss, G.W., Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci., 35, 807–811, 1987

  • Prölss, G.W., Satellite mass spectrometer measurements of composition changes, Adv. Space Res., 12 , No. 10, 241–251, 1992

  • Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 98, 5981–5991, 1993

  • Prölss, G.W., Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, 2 (H. Volland, ed.), 195–248, CRC Press , Boca Raton, 1995

  • Prölss, G.W., Magnetic storm associated perturbations of the upper atmosphere, in Magnetic Storms (B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, eds.), 227–241, Geophys. Monogr. 98, AGU, Washington, D.C., 1997

  • Prölss, G.W., Space weather effects in the upper atmosphere: Low and middle latitudes, in Space Weather (K. Scherer, H. Fichtner, B. Heber, and U. Mall, eds.), 193–234, Lecture Notes in Physics 656, Springer, Berlin/Heidelberg/New York, 2005

  • Prölss, G.W., Perturbations of the polar upper atmosphere in the cleft region, J. Atmos. Solar-Terr. Phys., 70, 2374–2380, 2008

  • Prölss, G.W., and J.D. Craven, Perturbations of the FUV dayglow and ionospheric storm effects, Adv. Space Res., 22 , No. 1, 129–134, 1998

  • Prölss, G.W., and K.H. Fricke, Neutral composition changes during a period of increasing magnetic activity, Planet. Space Sci., 24, 61–67, 1976

  • Prölss, G.W., and M. Ocko, Propagation of upper atmospheric storm effects towards lower latitudes, Adv. Space Res., 26 , No. 1, 131–135, 2000

  • Prölss, G.W., and M. Roemer, Seasonal and solar activity dependent variations of the geomagnetic activity effect at high latitudes, Adv. Space Res., 3 , No. 1, 99–102, 1983

  • Prölss, G.W., and M. Roemer, Some properties of the polar energy source and of the associated atmospheric perturbations, Adv. Space Res., 5 , No. 7, 193–202, 1985

  • Prölss, G.W., and M. Roemer, Thermospheric storms, Adv. Space Res., 7 , No. 10, 223–235, 1987

  • Prölss, G.W., and U. von Zahn, Magnetic storm associated changes in neutral composition of the atmosphere at mid-latitudes observed by the ESRO 4 gas analyser, Space Res., 14, 157–161, 1974a

  • Prölss, G.W., and U. von Zahn, Esro 4 gas analyzer results 2.Direct measurements of changes in the neutral composition during an ionospheric storm, J. Geophys. Res., 79, 2535–2539, 1974b

  • Prölss, G.W., and U. von Zahn, Large and small scale changes in the disturbed upper atmosphere, J. Atmos. Terr. Phys., 38, 655–659, 1976

  • Prölss, G.W., and U. von Zahn, On the global morphology of negative ionospheric storms, Space Res., 17, 433–438, 1977a

  • Prölss, G.W., and U. von Zahn, Seasonal variations in the latitudinal structure of atmospheric disturbances, J. Geophys. Res., 82, 5629–5632, 1977b

  • Prölss, G.W., and U. von Zahn, On the local time variation of atmospheric-ionospheric disturbances, Space Res., 18, 159–162, 1978

  • Prölss, G.W., and S. Werner, Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms, J. Geophys. Res., 107, A2, doi:10.1029/2001JA900126, 2002

  • Prölss, G.W., K.H. Fricke, and U. von Zahn, Observations during a magnetic storm in late October 1973, Space Res., 15, 215–220, 1975a

  • Prölss, G.W., U. von Zahn, and W.J. Raitt, Neutral atmospheric composition, plasma density, and electron temperature at F region heights, J. Geophys. Res., 80, 3715-3718, 1975b

  • Prölss, G.W., M. Roemer, and J. W. Slowey, Dissipation of solar wind energy in the earth’s upper atmosphere: the geomagnetic activity effect, Adv. Space Res., 8 , No. 5-6, 215–261, 1988

  • Prölss, G.W., L.H. Brace, H.G. Mayr, G.R. Carignan, T.L. Killeen, and J.A. Klobuchar, Ionospheric storm effects at subauroral latitudes: A case study, J. Geophys. Res., 96, 1275–1288, 1991

  • Prölss, G.W., S. Werner, M.V. Codrescu, T.J. Fuller-Rowell, A.G. Burns, and T.L. Killeen, The thermospheric-ionospheric storm of Dec 8, 1982: model predictions and observations, Adv. Space Res., 22 , No. 1, 123–128, 1998

  • Qin, G., S. Qiu, H. Ye, A. He, L. Sun, X. Lin, H. Li, X. Xu, and H. Zeng, The thermospheric composition different responses to geomagnetic storm in the winter and summer hemisphere measured by “SZ” Atmospheric Composition Detectors, Adv. Space Res., 42, 1281–1287, 2008

  • Raitt, W.J., U. von Zahn, and P. Christophersen, A comparison of thermospheric neutral gas heating and related thermal and energetic plasma phenomena at high latitudes during geomagnetic disturbances, J. Geophys. Res., 80, 2277–2288, 1975

  • Reber, C.A., Dynamical effects in the distribution of helium in the thermosphere, J. Atmos. Terr. Phys., 38, 829–840, 1976

  • Reber, C.A., and A.E. Hedin, Heating of the high-latitude thermosphere during magnetically quiet periods, J. Geophys. Res., 79, 2457–2461, 1974

  • Reber, C.A., and M. Nicolet, Investigation of the major constituents of the April-May 1963 heterosphere by the Explorer XVII satellite, Planet. Space Sci., 13, 617–646, 1965

  • Reber, C.A., A.E. Hedin, and S. Chandra, Equatorial phenomena in neutral thermospheric composition, J. Atmos. Terr. Phys., 35, 1223–1228, 1973

  • Rees, D., The response of the high-latitude thermosphere to geomagnetic activity, Adv. Space Res., 5 , No. 4, 267–282, 1985

  • Rees, D., Observations and modelling of ionospheric and thermospheric disturbances during major geomagnetic storms: a review, J. Atmos. Terr. Phys., 57, 1433–1457, 1995

  • Rees, D., and T.J. Fuller-Rowell, The response of the thermosphere and ionosphere to magnetospheric forcing, Phil. Trans. Roy. Soc. Lond. A, 328, 139–171, 1989

  • Rees, D., and T.J. Fuller-Rowell, Thermospheric response and feedback to auroral inputs, in Auroral Physics (C.-I. Meng et al., eds.), 51–65, Cambridge UP, 1991

  • Rees, D., and T.J. Fuller-Rowell, Modelling the response of the thermosphere/ionosphere system to time dependent forcing, Adv. Space Res., 12 , No. 6, 69–87, 1992

  • Rees, D., R. Gordon, T.J. Fuller-Rowell, M. Smith, G.R. Carignan, T.L. Killeen, P.B. Hays, and N.W. Spencer, The composition, structure, temperature and dynamics of the upper thermosphere in the polar regions during October to December 1981, Planet. Space Sci., 33, 617–666, 1985

  • Rees, D., T.J. Fuller-Rowell, S. Quegan, R.J. Moffett, and G.J. Bailey, Thermospheric dynamics: understanding the unusual disturbances by means of simulations with a fully-coupled global thermosphere/high-latitude ionosphere model, Ann. Geophys., 5A, 303–328, 1987

  • Rees, D., T.J. Fuller-Rowell, and H. Rishbeth, The use of mass spectrometer measurements to derive thermospheric temperature and density, Planet. Space Sci., 36, 281–290, 1988

  • Rees, M.H., and R.G. Roble, The morphology of N and NO in auroral substorms, Planet. Space Sci., 27, 453–462, 1979

  • Rees, M.H., and G.J. Romick, Atomic nitrogen in aurora: Production, chemistry, and optical emissions, J. Geophys. Res, 90, 9871–9879, 1985

  • Rentz, S., and H. Lühr, Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations, Ann. Geophys., 26, 2807–2823, 2008

  • Rhoden, E.A., J.M. Forbes, and F.A. Marcos, The influence of geomagnetic and solar variabilities on lower thermosphere density, J. Atmos. Solar-Terr. Phys., 62, 999–1013, 2000

  • Richards, P.G., Ion and neutral density variations during ionospheric storms in September 1974: Comparison of measurement and models, J. Geophys. Res., 107, A11, 1361, doi:10.1029/2002JA009278, 2002

  • Richards, P.G., On the increases in nitric oxide density at midlatitudes during ionospheric storms, J. Geophys. Res., 109, A06304, doi:10.1029/2003JA010110, 2004

  • Richards, P.G., and P.J. Wilkinson, The ionosphere and thermosphere at southern midlatitudes during the November 1993 ionospheric storm: A comparison of measurement and modeling, J. Geophys. Res., 103, 9373–9389, 1998

  • Richards, P.G., P.L. Dyson, T.P. Davies, M.L. Parkinson, and A.J. Reeves, Behavior of the ionosphere and thermosphere at a southern midlatitude station during magnetic storms in early March 1995, J. Geophys. Res., 103, 26421–26432, 1998

  • Richards, P.G., R.R. Meier, and P.J. Wilkinson, On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data, J. Geophys. Res., 115, A10309, doi:10.1029/2010JA015368, 2010

  • Richmond, A.D., and G. Lu, Upper-atmospheric effects of magnetic storms: a brief tutorial, J. Atmos. Solar-Terr. Phys., 62, 1115–1127, 2000

  • Ridley, A.J., G. Crowley, R. Link, R. Frahm, J.D. Winningham, J.R. Sharber, and J. Russell III, Variations of the thermospheric nitric oxide mass mixing ratio as a function of Kp, altitude, and magnetic local time, Geophys. Res. Lett., 26, 1541–1544, 1999

  • Rishbeth, H., R.J. Moffett, and G.J. Bailey, Vertical diffusion of O and N 2 in the thermosphere, Planet. Space Sci., 22, 189–192, 1974

  • Rishbeth, H., R. Gordon, D. Rees, and T.J. Fuller-Rowell, Modelling of thermospheric composition changes caused by a severe magnetic storm, Planet. Space Sci., 33, 1283–1301, 1985

  • Rishbeth, H., T.J. Fuller-Rowell, and D. Rees, Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: a computational study, Planet. Space Sci., 35, 1157–1165, 1987a

  • Rishbeth, H., T.J. Fuller-Rowell, and A.S. Rodger, F-layer storms and thermospheric composition, Phys. Scripta., 36, 327–336, 1987b

  • Rishbeth, H., R.A. Heelis, and I.C.F. Müller-Wodarg, Variations of thermospheric composition according to AE-C data and CTIP modelling, Ann. Geophys., 22, 441–452, 2004

  • Ritter, P., H. Lühr, and E. Doornbos, Substorm-related thermospheric density and wind disturbances derived from CHAMP observations, Ann. Geophys., 28, 1207–1220, 2010

  • Roble, R.G., The polar lower thermosphere, Planet. Space Sci., 40, 271–297, 1992

  • Roble, R.G., On forecasting thermospheric and ionospheric disturbances in space weather events, in Space Weather (P. Song, H.J. Singer, and G.L. Siscoe, eds.), 369–375, Geophysical Monograph 125, American Geophys. Union, Washington/DC, 2001

  • Roble, R.G., and J.M. Gary, The effect of horizontal transport on auroral NO densities, Geophys. Res. Lett., 6, 703–706, 1979

  • Roble, R.G., and M.H. Rees, Time-dependent studies of the aurora: Effects of particle precipitation on the dynamic morphology of ionospheric and atmospheric properties, Planet. Space Sci., 25, 991–1010, 1977

  • Roble, R.G., B.A. Emery, R.E. Dickinson, E.C. Ridley, T.L. Killeen, P.B. Hays, G.R. Carignan, and N.W. Spencer, Thermospheric circulation, temperature, and compositional structure of the Southern Hemisphere polar cap during October - November 1981, J. Geophys. Res., 89, 9057–9068, 1984

  • Roble, R.G., J.M. Forbes, and F.A. Marcos, Thermospheric dynamics during the March 22, 1979, magnetic storm, 1. model simulations, J. Geophys. Res., 92, 6045–6068, 1987

  • Rodrigo, R., J.S. Nisbet, and E. Battaner, The effect of horizontal winds upon the chemical composition of the lower thermosphere at high latitudes, J. Geophys. Res., 86, 3501–3508, 1981

  • Roemer, M., Geomagnetic activity effect and 27-day variation: response time of the thermosphere and lower exosphere, Space Res., 7, 1091–1099, 1967a

  • Roemer, M., Geomagnetic activity effect derived from Explorer 9 drag data, Phil. Trans. Roy. Soc., A262, 185–194, 1967b

  • Roemer, M., Structure of the thermosphere and its variations, Ann. Geophys., 25, 419–437, 1969

  • Roemer, M., Geomagnetic activity effect on atmospheric density in the 250 to 800 km altitude region, Space Res., 11, 965–974, 1971a

  • Roemer, M., Recent observational results on the neutral upper atmosphere, Space Res., 11, 761–778, 1971b

  • Roemer, M., Structure of the thermosphere and its variations, deduced from satellite decay, in Physics of the Upper Atmosphere (F. Verniani, ed.), 229–293, Editrice Compositori, Bologna, Italy, 1971c

  • Roemer, M., Recent observational results on the thermosphere and exosphere, in COSPAR Int. Ref. Atmosphere (CIRA) 1972, 341–396, Akademie-Verlag, Berlin, 1972

  • Roemer, M., Recent improvements in our knowledge of neutral atmosphere structure from satellite drag measurements, Radio Science, 9, 223–229, 1974

  • Roemer, M., and G. Lay, Characteristics of the geomagnetic activity effect in the thermosphere, Space Res., 12, 797–802, 1972

  • Romanovsky, Y.A., and V.V. Katyushina, On thermospheric composition and temperature variations during geomagnetic disturbances, Space Res., 14, 163–167, 1974

  • Rothwell, P., and C.E. McIlwain, Magnetic storms and the Van Allen radiation belts – observations from satellite 1958ε (Explorer IV), J. Geophys. Res., 65, 799–806, 1960

  • Rusch, D.W., Satellite ultraviolet measurements of nitric oxide fluorescence with a diffusive transport model, J. Geophys. Res., 78, 5676–5686, 1973

  • Rusch, D.W., and C.A. Barth, Satellite measurements of nitric oxide in the polar region, J. Geophys. Res., 80, 3719–3721, 1975

  • Russell, A.T., J.-P. St.-Maurice, R.J. Sica, and J.-M. Noël, Composition changes during disturbed conditions: Are mass spectrometers overestimating the concentrations of atomic oxygen ?, Geophys. Res. Lett., 34, L21106, doi:10.1029/ 2007GL030607, 2007

  • Sætre, C., J. Stadsnes, H. Nesse, A. Aksnes, S.M. Petrinec, C.A. Barth, D.N. Baker, R.R. Vondrak, and N. Østgaard, Energetic electron precipitation and the NO abundance in the upper atmosphere: A direct comparison during a geomagnetic storm, J. Geophys Res., 109, A09302, doi:10.1029/2004JA010485, 2004

  • Sætre, C., C.A. Barth, J. Stadsness, N. Østgaard, S.M. Bailey, D.N. Baker, and J.W. Gjerloev, Comparisons of electron energy deposition derived from observations of lower thermospheric nitric oxide and from X-ray bremsstrahlung measurements, J. Geophys. Res., 111, A04302, doi:10.1029/2005JA011391, 2006

  • Sætre, C., C.A. Barth, J. Stadsnes, N. Østgaard, S.M. Bailey, D.N. Baker, G.A. Germany, and J.W. Gjerloev, Thermospheric nitric oxide at higher latitudes: Model calculations with auroral energy input, J. Geophys. Res., 112, A08306, doi:10.1029/2006JA012203, 2007

  • Schaeffer, R.C., and J.F. Noxon, Further study of changes in thermospheric molecular oxygen abundance inferred from twilight 6300 Å airglow, Planet. Space Sci., 23, 1413–1423, 1975

  • Schlegel, K., H. Lühr, J.-P. St.-Maurice, G. Crowley, and C. Hackert, Thermospheric density structures over the polar regions observed with CHAMP, Ann. Geophys., 23, 1659–1672, 2005

  • Schmidtke, G., Phase lag of atomic oxygen density increase in the thermosphere, J. Geophys. Res., 80, 1367–1369, 1975

  • Schoendorf, J., and G. Crowley, Interpretation of an unusual high latitude density decrease in terms of thermospheric density cells, Geophys. Res. Lett., 22, 3023–3026, 1995

  • Schoendorf, J., G. Crowley, and R.G. Roble, Neutral density cells in the high latitude thermosphere – 2. Mechanisms, J. Atmos. Terr. Phys., 58, 1769–1781, 1996a

  • Schoendorf, J., G. Crowley, R.G. Roble, and F.A. Marcos, Neutral density cells in the high latitude thermosphere – 1. Solar maximum cell morphology and data analysis, J. Atmos. Terr. Phys., 58, 1751–1768, 1996b

  • Schunk, R.W., and L. Zhu, Response of the ionosphere-thermosphere system to magnetospheric processes, J. Atmos. Solar-Terr. Phys., 70, 2358–2373, 2008

  • Sehnal, L., Comparison of thermospheric density models at 285 km, Planet. Space Sci., 36, 1121–1123, 1988a

  • Sehnal, L., Thermospheric total density model TD, Bull. Astron. Inst. Czechosl., 39, 120–127, 1988b

  • Shimazaki, T., Effects of vertical mass motions on the composition structure in the thermosphere, Space Res., 12, 1039–1045, 1972

  • Sinha, A.K., and S. Chandra, Seasonal and magnetic storm related changes in the thermosphere induced by eddy mixing, J. Atmos. Terr. Phys., 36, 2055–2066, 1974

  • Siskind, D.E., C.A. Barth, and R.G. Roble, The response of thermospheric nitric oxide to an auroral storm 1. Low and middle latitudes, J. Geophys. Res., 94, 16885–16898, 1989a

  • Siskind, D.E., C.A. Barth, D.S. Evans, and R.G. Roble, The response of thermospheric nitric oxide to an auroral storm 2. Auroral latitudes, J. Geophys. Res., 94, 16899–16911, 1989b

  • Siskind, D.E., C.A. Barth, and J.M. Russell III, A climatology of nitric oxide in the mesosphere and thermosphere, Adv. Space Res., 21 , No. 10, 1353–1362, 1998

  • Skoblin, M.G., and M. Förster, An alternative explanation of ionization depletions in the winter night-time storm-perturbed F2-layer, Ann. Geophys., 11, 1026–1032, 1993

  • Skoblin, M.G., and M. Förster, Steep latitudinal gradients of thermospheric composition during magnetic storms: a possible formation mechanism, Ann. Geophys., 13, 277–284, 1995

  • Skoblin, M.G., and A.V. Mikhailov, Some peculiarities of altitudinal distribution of atomic oxygen at low latitudes during magnetic storms, J. Atmos. Terr. Phys., 58, 875–881, 1996

  • Slowey, J.W., Models of the geomagnetic effect in the earth’s thermosphere, Adv. Space Res., 1, 213–219, 1981

  • Slowey, J.W., The geomagnetic variation in the upper atmosphere, Adv. Space Res., 3 , No. 1, 67–73, 1983

  • Slowey, J.W., Thermospheric storm effects, Adv. Space Res., 7 , No. 10, 237–245, 1987

  • Solomon, S.C., C.A. Barth, and S.M. Bailey, Auroral production of nitric oxide measured by the SNOE satellite, Geophys. Res. Lett., 26, 1259–1262, 1999

  • Sreeja, V., S. Ravindran, T.K. Pant, C.V. Devasia, and L.J. Paxton, Equatorial and low-latitude ionosphere-thermosphere system response to the space weather event of August 2005, J. Geophys. Res., 114, A12307, doi:10.1029/2009JA014491, 2009

  • Stehle, C.G., J.S. Nisbet, and E. Bleueler, A global model of the neutral thermosphere in magnetic coordinates based on OGO 6 data, J. Geophys. Res., 87, 1615–1622, 1982

  • Stephan, A.W., K.F. Dymond, S.A. Budzien, and R.P. McCoy, Middle ultraviolet remote sensing of the equatorial thermosphere during a geomagnetic storm, Ann. Geophys., 22, 3203–3209, 2004

  • Stephan, A.W., R.R. Meier, and L.J. Paxton, Comparison of Global Ultraviolet Imager limb and disk observations of column O/N 2 during a geomagnetic storm, J. Geophys. Res, 113, doi:10.1029/2007JA012599, 2008

  • Strickland, D.J., and G.E. Thomas, Global atomic oxygen density derived from Ogo-6 1304 Å airglow measurements, Planet. Space Sci., 24, 313–326, 1976

  • Strickland, D.J., R.J. Cox, R.R. Meier, and D.P. Drob, Global O/N 2 derived from DE 1 FUV dayglow data: Technique and examples from two storm periods, J. Geophys. Res., 104, 4251–4266, 1998

  • Strickland, D.J., J.H. Hecht, A.B. Christensen, and D.J. McEwen, Thermospheric disturbance recorded by photometers onboard the ARIA II rocket, J. Geophys. Res., 105, 2461–2475, 2000

  • Strickland, D.J., J.D. Craven, and R.E. Daniell Jr., Six days of thermospheric-ionospheric weather over the Northern Hemisphere in late September 1981, J. Geophys. Res., 106, 30291–30306, 2001a

  • Strickland, D.J., R.E. Daniell, and J.D. Craven, Negative ionospheric storm coincident with DE 1-observed thermospheric disturbance on October 14, 1981, J. Geophys. Res., 106, 21049–21062, 2001b

  • Stubbe, P., Vertical neutral gas motions and deviations from the barometric law in the lower thermosphere, Planet. Space Sci., 20, 209–215, 1972

  • Stubbe, P., On deviations from the barometric law in the lower thermosphere, Planet. Space Sci., 22, 186–189, 1974

  • Stubbe, P., Interaction of neutral and plasma motions in the ionosphere, in Handbuch der Physik, 49/6, Geophysik 3/6 (K. Rawer, ed.), 247–308, Springer, 1982

  • Sun, Z.-P., R.P. Turco, R.L. Walterscheid, S.V. Venkateswaran, and P.W. Jones, Thermospheric response to morningside diffuse aurora: High-resolution three-dimensional simulations, J. Geophys. Res., 100, 23779–23793, 1995

  • Sutton, E.K., J.M. Forbes, and R.S. Nerem, Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data, J. Geophys. Res., 110, A09S40, doi:10.1029/2004JA 010985, 2005

  • Swider, W., and R.S. Narcisi, Ion composition in an IBC class II aurora - 2. Model, J. Geophys. Res, 79, 2849–2852, 1974

  • Swider, W., and R.S. Narcisi, Auroral E-region: Ion composition and nitric oxide, Planet. Space Sci., 25, 103–116, 1977

  • Taeusch, D.R., Structure of electrodynamic and particle heating in the disturbed polar thermosphere, J. Geophys. Res., 82, 455–460, 1977

  • Taeusch, D.R., and B.B. Hinton, Structure of electrodynamic and particle heating in the undisturbed polar thermosphere, J. Geophys. Res., 80, 4346–4350, 1975

  • Taeusch, D.R., G.R. Carignan, and C.A. Reber, Neutral composition variation above 400 kilometers during a magnetic storm, J. Geophys. Res., 76, 8318–8325, 1971a

  • Taeusch, D.R., G.R. Carignan, and C.A. Reber, Response of the neutral atmosphere to geomagnetic disturbances, Space Res., 11, 995–1002, 1971b

  • Thayer, J.P., J. Lei, J.M. Forbes, E.K. Sutton, and R.S. Nerem, Thermospheric density oscillations due to periodic solar wind high-speed streams, J. Geophys. Res., 113, A06307, doi:10.1029/2008JA013190, 2008

  • Thomas, G.E., and B.K. Ching, Upper atmospheric response to transient heating, J. Geophys. Res., 74, 1796–1811, 1969

  • Trinks, H., K.H. Fricke, U. Laux, G.W. Prölss, and U. von Zahn, Esro 4 gas analyzer results 3. Spatial and temporal structure of the mid-latitude atmosphere during a geomagnetic storm, J. Geophys. Res., 80, 4571–4575, 1975

  • Trinks, H., S. Chandra, N.W. Spencer, and U. von Zahn, A two-satellite study of the neutral atmosphere response to a major geomagnetic storm, J. Geophys. Res., 81, 5013–5017, 1976

  • Trinks, H., H.G. Mayr, D.C. Kayser, and W.E. Potter, Auroral energy deposition and neutral composition changes observed simultaneously by ESRO 4 and AE-C at different altitudes, J. Atmos. Terr. Phys., 39, 287–294, 1977

  • Trinks, H., H.G. Mayr, and C.R. Philbrick, Momentum source signatures in thermospheric neutral composition, J. Geophys. Res., 83, 1641–1643, 1978

  • Truttse, Yu. L., Upper atmosphere during geomagnetic disturbances – II   Geomagnetic storms, oxygen emission at 6300 Å and heating of the upper atmosphere, Planet. Space Sci., 16, 1201–1208, 1968

  • Truttse, Yu.L., Upper atmosphere during geomagnetic disturbances – III   Some regularities in density variations, Planet. Space Sci., 17, 181–187, 1969

  • Truttse, Yu.L., Some peculiarities of the heating of the upper atmosphere during geomagnetic storms and aurorae, Space Res., 10, 467–477, 1970

  • Tsurutani, B.T., O.P. Verkhoglyadova, A.J. Mannucci, T. Araki, A. Sato, T. Tsuda, and K. Yumoto, Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event, Ann. Geophys., 25, 569–574, 2007

  • Turunen, E., P.T. Verronen, A. Seppälä, C.J. Rodger, M.A. Clilverd, J. Tamminen, C.-F. Enell, and T. Ulich, Impact of different energies of precipitating particles on NO x generation in the middle and upper atmosphere during geomagnetic storms, J. Atmos. Solar-Terr. Phys., 71, 1176–1189, 2009

  • Villain, J.-P., C. Berger, and F. Barlier, Analyse de l’augmentation de la densité thermosphérique et de l’observation de perturbations en zone équatoriale durant un orage magnétique, C.R. Acad. Sc. Paris, 289, Séries B, 25–28, 1979

  • Volland, H., Heat conduction waves in the upper atmosphere, J. Geophys. Res., 72, 2831–2841, 1967

  • Volland, H., A theory of thermospheric dynamics – II Geomagnetic activity effect, 27-day variation and semiannual variation, Planet. Space Sci., 17, 1709–1724, 1969

  • Volland, H., Magnetospheric electric fields and currents and their influence on large scale thermospheric circulation and composition, J. Atmos. Terr. Phys., 41, 853–866, 1979

  • Volland, H., Thermospheric storms, in Atmospheric Tidal and Planetary Waves, 304–317, Kluwer Academic Publisher, 1988

  • Volland, H., and H.G. Mayr, Response of the thermospheric density to auroral heating during geomagnetic disturbances, J. Geophys. Res., 76, 3764–3776, 1971

  • Volland, H., and H.G. Mayr, Properties of the three-dimensional thermosphere dynamics, Space Res., 12, 1001–1005, 1972

  • Volland, H., and H.G. Mayr, Theoretical aspects of tidal and planetary wave propagation at thermospheric heights, Rev. Geophys. Space Phys., 15, 203–226, 1977

  • von Zahn, U., Early aeronomy results from the satellite Esro 4, in Atmospheres of Earth and the Planets (B.M. McCormac, ed.), 133–157, Reidel Publ. Co., Dordrecht, Holland, 1975

  • von Zahn, U., and K.H. Fricke, Empirical models of global thermospheric composition and temperature during geomagnetically quiet times compared with ESRO 4 gas analyzer data, Rev. Geophys. Space Phys., 16, 169–175, 1978

  • von Zahn, U., W. Köhnlein, K.H. Fricke, U. Laux, H. Trinks, and H. Volland, ESRO 4 model of global thermospheric composition and temperatures during times of low solar activity, Geophys. Res. Lett., 4, 33–36, 1977

  • Weeks, L.H., Observation of O 2 variability at mid-latitudes from 1450-Å measurements, J. Geophys. Res., 80, 3661–3666, 1975

  • Werner, S., R. Bauske, and G.W. Prölss, On the origin of positive ionospheric storms, Adv. Space Res., 24 , No. 11, 1485–1489, 1999

  • Wright, J.W., and R.O. Conkright, Prospects for an ionospheric index of neutral thermospheric composition, with space-weather applications, J. Geophys. Res., 106, 21063–21075, 2001

  • Wulf-Mathies, C., P. Blum, and H. Trinks, Local composition changes in the thermosphere at high latitudes during moderate geomagnetic conditions, Space Res., 15, 203–207, 1975

  • Zhang, Y., L.J. Paxton, H. Kil, C.-I. Meng, S.B. Mende, H.U. Frey, and T.J. Immel, Negative ionospheric storms seen by the IMAGE FUV instrument, J. Geophys. Res., 108, A9, 1343, doi:10.1029/2002JA009797, 2003

  • Zhang, Y., L.J. Paxton, D. Morrison, B. Wolven, H. Kil, and C.-I. Meng, O/N 2 changes during 1-4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations, J. Geophys. Res., 109, A10308, doi:10.1029/2004JA010441, 2004

  • Zhou, Y.L., S.Y. Ma, H. Lühr, C. Xiong, and C. Reigber, An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data, Adv. Space Res., 43, 819–828, 2009

  • Zipf, E.C., W.L. Borst, and T.M. Donahue, A mass spectrometer obsrevation of NO in an auroral arc, J. Geophys. Res., 75, 6371–6376, 1970

  • Zirm, R.R., Variations in decay rate of satellites 1963-21, J. Geophys. Res., 69, 4696–4697, 1964

  • Zuzic, M., L. Scherliess, and G.W. Prölss, Latitudinal structure of thermospheric composition perturbations, J. Atmos. Solar-Terr. Phys., 59, 711–724, 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prölss, G.W. Density Perturbations in the Upper Atmosphere Caused by the Dissipation of Solar Wind Energy. Surv Geophys 32, 101–195 (2011). https://doi.org/10.1007/s10712-010-9104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-010-9104-0

Keywords

Navigation