Skip to main content

Advertisement

Log in

How to Calculate Bouguer Gravity Data in Planetary Studies

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In terrestrial studies, Bouguer gravity data is routinely computed by adopting various numerical schemes, starting from the most basic concept of approximating the actual topography by an infinite Bouguer plate, through adding a planar terrain correction to account for a local/regional terrain geometry, to more advanced schemes that involve the computation of the topographic gravity correction by taking into consideration a gravitational contribution of the whole topography while adopting a spherical (or ellipsoidal) approximation. Moreover, the topographic density information has significantly improved the gravity forward modeling and interpretations, especially in polar regions (by accounting for a density contrast of polar glaciers) and in regions characterized by a complex geological structure. Whereas in geodetic studies (such as a gravimetric geoid modeling) only the gravitational contribution of topographic masses above the geoid is computed and subsequently removed from observed (free-air) gravity data, geophysical studies focusing on interpreting the Earth’s inner structure usually require the application of additional stripping gravity corrections that account for known anomalous density structures in order to reveal an unknown (and sought) density structure or density interface. In planetary studies, numerical schemes applied to compile Bouguer gravity maps might differ from terrestrial studies due to two reasons. While in terrestrial studies the topography is defined by physical heights above the geoid surface (i.e., the geoid-referenced topography), in planetary studies the topography is commonly described by geometric heights above the geometric reference surface (i.e., the geometric-referenced topography). Moreover, large parts of a planetary surface have negative heights. This obviously has implications on the computation of the topographic gravity correction and consequently Bouguer gravity data because in this case the application of this correction not only removes the gravitational contribution of a topographic mass surplus, but also compensates for a topographic mass deficit. In this study, we examine numerically possible options of computing the topographic gravity correction and consequently the Bouguer gravity data in planetary applications. In agreement with a theoretical definition of the Bouguer gravity correction, the Bouguer gravity maps compiled based on adopting the geoid-referenced topography are the most relevant. In this case, the application of the topographic gravity correction removes only the gravitational contribution of the topography. Alternative options based on using geometric heights, on the other hand, subtract an additional gravitational signal, spatially closely correlated with the geoidal undulations, that is often attributed to deep mantle density heterogeneities, mantle plumes or other phenomena that are not directly related to a topographic density distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Airy GB (1855) On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Trans R Soc Lond 145(B):101–104

    Google Scholar 

  • Archinal BA, A’Hearn MF, Conrad A, Consolmagno GJ, Courtin R, Fukushima T, Hestroffer D, Hilton JL, Krasinsky GA, Neumann G, Oberst J, Seidelmann PK, Stooke P, Tholen DJ, Thomas PC, Williams IP (2011) Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements. Celest Mech Dyn Astron 109(2):101–135

    Article  Google Scholar 

  • Ardalan AA, Karimi R (2014) Effect of topographic bias on geoid and reference ellipsoid of Venus, Mars, and the Moon. Celest Mech Dyn Astron 118:75–88

    Article  Google Scholar 

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geod 86(7):499–520

    Article  Google Scholar 

  • Bamber JL, Griggs JA, Hurkmans RTWL, Dowdeswell JA, Gogineni SP, Howat I, Mouginot J, Paden J, Palmer S, Rignot E, Steinhage D (2013) A new bed elevation dataset for Greenland. Cryosphere 7:499–510

    Article  Google Scholar 

  • Barker MK, Mazarico E, Neumann GA, Zuber MT, Haruyama J, Smith DE (2016) A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2723(15):346–355

    Article  Google Scholar 

  • Basilevsky AT, Head JW (2002) Venus: timing and rates of geologic activity. Geology 30(11):1015–1018

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371

    Article  Google Scholar 

  • Becker KJ, Robinson MS, Becker TL, Weller LA, Edmundson KL, Neumann GA, Perry ME, Sean C (2016) First global digital elevation model of Mercury. In: 47th Lunar and Planetary Science Conference, LPS 47, Abstract 2959

  • Bjerhammar A (1963) A note on gravity reduction to a spherical surface. Tellus 15(3):319–320

    Article  Google Scholar 

  • Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential—new solutions for spectral forward gravity modelling of topography with respect to a reference ellipsoid. J Geophys Res Solid Earth 118(11):5991–6002

    Article  Google Scholar 

  • Erwan M, Genova A, Goossens S, Lemoine FG, Neumann GA, Zuber MT, Smith DE, Solomon SC (2014) The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J Geophys Res Planets 119(12):2417–2436

    Article  Google Scholar 

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services Tapley BD, Bettadpur S, Watkins M

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393

    Article  Google Scholar 

  • Goossens S, Sabaka TJ, Genova A, Mazarico E, Nicholas JB, Neumann GA (2017) Evidence for a low bulk crustal density for Mars from gravity and topography. Geophys Res Lett 44(15):7686–7694

    Article  Google Scholar 

  • Hammer S (1939) Terrain corrections for gravimeter stations. Geophysics 4:184–194

    Article  Google Scholar 

  • Hayford JF, Bowie W (1912) The effect of topography and isostatic compensation upon the intensity of gravity. US Coast Geod Surv 10, Special Publication, 132 pp

  • Heiskanen WH, Moritz H (1967) Physical geodesy. WH Freeman and Co, San Francisco

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559

    Article  Google Scholar 

  • Hirt C, Rexer M (2015) Earth 2014: 1 arc-min shape, topography, bedrock and ice-sheet models—available as gridded data and degree-10,800 spherical harmonics. Int J Appl Earth Obs Geoinform 39:103–112

    Article  Google Scholar 

  • Hirt C, Reußner E, Rexer M, Kuhn M (2016) Topographic gravity modelling for global Bouguer maps to degree 2,160: validation of spectral and spatial domain forward modelling techniques at the 10 microgal level. J Geophys Res Solid Earth 121(9):6846–6862

    Article  Google Scholar 

  • Huang Q, Wieczorek MA (2012) Density and porosity of the lunar crust from gravity and topography. J Geophys Res Planets 117:E05003

    Article  Google Scholar 

  • Ivanov MA, Head JW (2015) The history of tectonism on Venus: a stratigraphic analysis. Planet Space Sci 113–114:10–32

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-SXI SRTM 90 m database. http://srtm.csi.cgiar.org. Accessed 17 May 2018

  • Johnson CL, Phillips RJ (2005) Evolution of the Tharsis region of Mars: insights from magnetic field observations. Earth Planet Sci Lett 230:241–254

    Article  Google Scholar 

  • Karimi R, Ardalan AA, Farahani SV (2016) Reference surface of the planet Mercury from MESSENGER. Icarus 264:239–245

    Article  Google Scholar 

  • Konopliv AS, Banerdt WB, Sjogren WL (1999) Venus gravity: 180th degree and order model. Icarus 139:3–18

    Article  Google Scholar 

  • Konopliv AS, Park RS, Folkner WM (2016) An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274:253–260

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of earth’s crust. Geophys Res Abstr 15. Abstract EGU2013-2658

  • Lemoine FG, Goossens S, Sabaka TJ, Nicholas JB, Mazarico E, Rowlands DD, Loomis BD, Chinn DS, Neumann GA, Smith DE, Zuber MT (2014) GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys Res Lett 41(10):3382–3389

    Article  Google Scholar 

  • McKenzie D (1994) The relationship between topography and gravity on Earth and Venus. Icarus 112(1):55–88

    Article  Google Scholar 

  • McNamee JB, Borderies NJ, Sjogren WL (1993) Venus: global gravity and topography. J Geophys Res Planets 98(E5):9113–9128

    Article  Google Scholar 

  • Melosh HJ, Freed AM, Johnson BC, Blair DM, Andrews-Hanna JC, Neumann GA, Phillips RJ, Smith DE, Solomon SC, Wieczorek MA, Zuber MT (2013) The origin of Lunar mascon basins. Science 340(6140):1552–1555

    Article  Google Scholar 

  • Neumann GA, Zuber MT, Wieczorek MA, McGovern PJ, Lemoine FG, Smith DE (2004) Crustal structure of Mars from gravity and topography. J Geophys Res 109:E08002

    Article  Google Scholar 

  • Nimmo F (2002) Admittance estimates of mean crustal thickness and density at the Martian hemispheric dichotomy. J Geophys Res 107(E11):5117

    Article  Google Scholar 

  • Nimmo F, Stevenson DJ (2001) Estimates of Martian crustal thickness from viscous relaxation of topography. J Geophys Res 106:5085–5098

    Article  Google Scholar 

  • Novák P, Vaníček P, Martinec Z, Véronneau M (2001) The effect of distant terrain on gravity and the geoid. J Geod 75(9–10):491–504

    Google Scholar 

  • Padovan S, Wieczorek MA, Margot J-L, Solomon SC (2014) Thickness of the crust of Mercury from geoid-to-topography ratios. EPSC Abstracts 9. EPSC2014-738, European Planetary Science Congress 2014

  • Phillips RJ, Hansen VL (1994) Tectonic and magmatic evolution of Venus. Annu Rev Earth Planet Sci 22(1):597–656

    Article  Google Scholar 

  • Phillips RJ, Lambeck K (1980) Gravity fields of the terrestrial planets: long-wavelength anomalies and tectonics. Rev Geophys 18(1):27–76

    Article  Google Scholar 

  • Phillips RJ, Saunders RS (1975) The isostatic state of Martian topography. J Geophys Res 80:2893–2898

    Article  Google Scholar 

  • Pizzetti P (1911) Sopra il calcolo teorico delle deviazioni del geoide dall` ellissoide. Atti R Accad Sci Torino 46:331

    Google Scholar 

  • Rummel R (2005) Gravity and topography of Moon and planets. Earth Moon Planets 94:103–111

    Article  Google Scholar 

  • Sebera J, Haagmans R, Floberghagen R, Ebbing J (2018) Gravity spectra from the density distribution of Earth’s uppermost 435 km. Sur Geophys 9(2):227–244

    Article  Google Scholar 

  • Sjöberg LE (1997) The topographic bias by analytical continuation in physical geodesy. J Geod 81:345–350

    Article  Google Scholar 

  • Sjöberg LE (2013) On the isotactic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys J Int 193(3):1277–1282

    Article  Google Scholar 

  • Smith DE, Zuber MT (1996) The shape of Mars and the topographic signature of the hemispheric dichotomy. Science 271:184–188

    Article  Google Scholar 

  • Smith DE, Zuber MT, Solomon SC, Phillips RJ, Head JW, Garvin JB, Banerdt WB, Muhleman DO, Pettengill GH, Neumann GA, Lemoine FG, Abshire JB, Aharonson OC, Brown D, Hauck SA, Ivanov AB, McGovern PJ, Zwally HJ, Duxbury TC (1999) The global topography of Mars and implications for surface evolution. Science 284:1495–1503

    Article  Google Scholar 

  • Smith DE, Zuber MT, Phillips RJ et al (2012) Gravity field and internal structure of Mercury from MESSENGER. Science 336:214–217

    Article  Google Scholar 

  • Somigliana C (1929) Teoria Generale del Campo Gravitazionale dell’Ellisoide di Rotazione. Memoire della Società Astronomica Italiana, IV, Milano

    Google Scholar 

  • Stofan ER, Smrekar SE (2005) Large topographic rises, coronae, large flow fields, and large volcanoes on Venus: evidence for mantle plumes? Geol Soc Am Spec Papers 388:841–861

    Google Scholar 

  • Tenzer R, Bagherbandi M (2012) Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 3(5):918–929

    Article  Google Scholar 

  • Tenzer R, Vaníček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79(1–3):82–92

    Article  Google Scholar 

  • Tenzer R, Moore P, Novák P, Kuhn M, Vaníček P (2006) Explicit formula for the geoid-to-quasigeoid separation. Stud Geophys Geodaet 50:607–618

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2011) On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud Geophys Geodaet 55(4):609–626

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2012a) The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of the seawater density. Mar Geod 35:198–220

    Article  Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012b) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207

    Article  Google Scholar 

  • Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák P, Jin S (2015a) Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv Geophys 36(1):139–165

    Article  Google Scholar 

  • Tenzer R, Eshagh M, Jin S (2015b) Martian sub-crustal stress from gravity and topographic models. Earth Planet Sci Lett 425:84–92

    Article  Google Scholar 

  • Tenzer R, Foroughi I, Pitoňák M, Šprlák M (2017) Effect of the Earth’s inner structure on the gravity in definitions of height systems. Geophys J Int 209(1):297–316

    Google Scholar 

  • Tenzer R, Foroughi I, Sjöberg LE, Bagherbandi M, Hirt Ch, Pitoňák M (2018) Definition of physical height systems for telluric planets and moons. Surv Geophys 39(1):23–56

    Article  Google Scholar 

  • Vajda P, Vaníček P, Novák P, Tenzer R, Ellmann A (2007) Secondary indirect effects in gravity anomaly data inversion or interpretation. J Geophys Res Solid Earth 112:B06411

    Article  Google Scholar 

  • Vajda P, Ellmann A, Meurers B, Vanícek P, Novák P, Tenzer R (2008a) Global ellipsoid-referenced topographic, bathymetric and stripping corrections to gravity disturbance. Stud Geophys Geodaet 52:19–34

    Article  Google Scholar 

  • Vajda P, Ellmann A, Meurers B, Vanícek P, Novák P, Tenzer R (2008b) Gravity disturbances in regions of negative heights: a reference quasi-ellipsoid approach. Stud Geophys Geodaet 52:35–52

    Article  Google Scholar 

  • Vaníček P, Tenzer R, Sjöberg LE, Martinec Z, Featherstone WE (2005) New views of the spherical Bouguer gravity anomaly. Geophys J Int 159:460–472

    Article  Google Scholar 

  • Wieczorek MA (2007) The gravity and topography of the terrestrial planets. In: Schubert G (ed) Treatise on Geophysics 10. Elsevier, Oxford, pp 165–206

    Chapter  Google Scholar 

  • Wieczorek MA (2015) Gravity and topography of the terrestrial planets. Treatise Geophys 10:153–193

    Article  Google Scholar 

  • Wieczorek MA, Zuber MT (2004) The thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J Geophys Res 109(E1):E01009

    Article  Google Scholar 

  • Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor GJ, Melosh HJ, Phillips RJ, Solomon SC, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Smith DE, Watkins MM, Williams JG, Zuber MT (2013) The crust of the Moon as seen by GRAIL. Science 339:671–675

    Article  Google Scholar 

  • Zuber MT (2001) The crust and mantle of Mars. Nature 412(12):220–227

    Article  Google Scholar 

Download references

Acknowledgements

This research is conducted under the HK science Project 1-ZE8F: Remote-sensing data for studding the Earth’s and planetary inner structure. Prof. Pavel Novák and Dr. Martin Pitoňák are supported by the Project 18-06943S of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Appendices

Appendix 1: Free-Air Gravity Disturbance

The free-air gravity disturbance δgFA at a location (r, Ω) is computed as follows (e.g., Heiskanen and Moritz 1967)

$$\delta g^{\text{FA}} \left( {r,\Omega } \right) = \frac{\text{GM}}{{R^{ 2} }}\sum\limits_{n = 0}^{{\bar{n}}} {\sum\limits_{m = - n}^{n} {\left( {\frac{R}{r}} \right)^{n + 2} \left( {n + 1} \right)T_{n,m} Y_{n,m} \left(\Omega \right)} } ,$$
(7)

where GM is the central gravitational constant (i.e., Newton’s gravitational constant G multiplied by the total mass of a planetary body M), R is the mean radius of a planetary body, Yn,m is the surface spherical function of degree n and order m, Tn,m are the (fully normalized) coefficients of the disturbing potential T (i.e., difference between the actual W and normal U gravity potentials, T = WU), and \(\bar{n}\) is the upper summation index of spherical harmonics. The 3-D position in Eq. (7) and thereafter is defined in the spherical coordinate system (r, Ω), where r is the radius of a computation surface point, and Ω = (ϕ, λ) is the spherical direction with a spherical latitude ϕ and longitude λ.

It is worth mentioning that the spectral expression for computing the free-air gravity anomaly ΔgFA comprises a term (n − 1), instead of (n + 1) for δgFA in Eq. (7).

Appendix 2: Topographic Gravity Correction

The topographic gravity correction gT (for a uniform topographic density distribution) is defined by Tenzer et al. (2015a)

$$g^{\text{T}} \left( {r,\Omega } \right) = \frac{\text{GM}}{{R^{ 2} }}\sum\limits_{n = 0}^{{\bar{n}}} {\left( {\frac{R}{r}} \right)^{n + 2} } \left( {n + 1} \right)\sum\limits_{m = - n}^{n} {V_{n,m}^{\text{T}} Y_{n,m} \left(\Omega \right)} .$$
(8)

The potential coefficients \(V_{n,m}^{\text{T}}\) in Eq. (8) read

$$V_{n,m}^{\text{T}} = \frac{3}{2n + 1}\frac{{\rho^{\text{T}} }}{{\bar{\rho }}}\sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{k + 1}\frac{{H_{n,m}^{{\left( {k + 1} \right)}} }}{{R^{k + 1} }} ,$$
(9)

where \(\bar{\rho }\) denotes the mean mass density of a planetary body, ρT is the average topographic density, and Hn,m denote topographic coefficients for physical heights. The coefficients Hn,m as well as the corresponding topographic coefficients for geometric heights and nonnegative heights (in the case of the Bjerhammar-referenced topography) are defined in Appendix 3. We note that the potential coefficients \(V_{n,m}^{\text{T}}\) in our numerical studies are computed using the topographic coefficients up to the fifth-order of binomial series in Eq. (9).

Appendix 3: Topographic Coefficients

The Laplace harmonics Hn of physical heights H are defined by the following integral convolution (e.g., Sjöberg 1997)

$$H\left(\Omega \right) = \sum\limits_{n = 0}^{\infty } {H_{n} \left(\Omega \right)} ,\quad H_{n} \left(\Omega \right) = \frac{2n + 1}{4\pi }\iint\limits_{\Phi } {H^{\prime } P_{n} \left( t \right){\text{d}}\Omega ^{\prime } } = \sum\limits_{m = - n}^{n} {H_{n,m} Y_{n,m} \left(\Omega \right)} ,$$
(10)

where Hn,m are the topographic coefficients generated from physical heights H, \({\text{d}}\Omega ^{{\prime }} = \cos \phi^{{\prime }} {\text{d}}\phi^{{\prime }} {\text{d}}\lambda^{{\prime }}\) is the infinitesimal spherical surface element, and \(\Phi = \left\{ {\Omega ^{\prime } = \left( {\phi^{\prime } ,\lambda^{\prime } } \right):\phi^{\prime } \in \left[ { - \pi /2,\pi /2} \right] \wedge \lambda^{\prime } \in \left[ {\left. {0,2\pi } \right)} \right.} \right\}\) is the full spatial angle. The Legendre polynomials Pn are defined for the argument \(t = \cos \psi\), where \(\psi\) is the spherical angle between points (r, Ω) and (r′, Ω′). The corresponding higher-order terms \(\left\{ {H_{n,m}^{\left( k \right)} :k = 2,3, \ldots } \right\}\) are given by

$$H_{n}^{\left( k \right)} \left(\Omega \right) = \frac{2n + 1}{4\pi }\iint\limits_{\Phi } {H^{\prime k} P_{n} \left( t \right){\text{d}}\Omega ^{\prime } } = \sum\limits_{m = - n}^{n} {H_{n,m}^{\left( k \right)} Y_{n,m} \left(\Omega \right)} .$$
(11)

By analogy with Eq. (10), we define the Laplace harmonics hn (and their higher-order terms) of geometric heights h as follows

$$h_{n}^{\left( k \right)} \left(\Omega \right) = \frac{2n + 1}{4\pi }\iint\limits_{\Phi } {h^{\prime k} P_{n} \left( t \right){\text{d}}\Omega ^{\prime } } = \sum\limits_{m = - n}^{n} {h_{n,m}^{\left( k \right)} Y_{n,m} \left(\Omega \right)} \quad \left( {k = 1,2, \ldots } \right) ,$$
(12)

where the topographic coefficients \(h_{n,m}^{\left( k \right)}\) are generated from geometric heights h.

Finally, we introduce the Laplace harmonics \(\tilde{h}_{n}\) for (nonnegative) geometric heights that are taken with respect to the Bjerhammar sphere/ellipsoid. For this purpose, we define the depth D of the Bjerhammar sphere (below the height reference sphere/ellipsoid) that is equal to the largest negative value of geometric height of a particular planetary body, i.e., \(D \equiv \hbox{max} \left| { - h} \right|\).

The Laplace harmonics \(\tilde{h}_{n}\) (and their higher-order terms) of h + D then read

$$\tilde{h}_{n}^{\left( k \right)} \left(\Omega \right) = \frac{2n + 1}{4\pi }\iint\limits_{\Phi } {\left( {h^{\prime } + D} \right)^{k} P_{n} \left( t \right){\text{d}}\Omega ^{\prime } } = \sum\limits_{m = - n}^{n} {\tilde{h}_{n,m}^{\left( k \right)} Y_{n,m} \left(\Omega \right)} \quad \left( {k = 1,2, \ldots } \right) .$$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenzer, R., Foroughi, I., Hirt, C. et al. How to Calculate Bouguer Gravity Data in Planetary Studies. Surv Geophys 40, 107–132 (2019). https://doi.org/10.1007/s10712-018-9504-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9504-0

Keywords

Navigation