Skip to main content
Log in

Reparameterization invariants for anisotropic Bianchi I cosmology with a massless scalar source

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Intrinsic time-dependent invariants are constructed for classical, flat, homogeneous, anisotropic cosmology with a massless scalar material source. Invariance under the time reparameterization-induced canonical symmetry group is displayed explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Pons J.M. and Salisbury D.C. (2005). The issue of time in generally covariant theories and the Komar–Bergmann approach to observables in general relativity. Phys. Rev. D 71: 124012 [gr-qc/0503013]

    Article  MathSciNet  Google Scholar 

  • Stachel J. (1989). Einstein’s search for general covariance. In: Howard, D. and Stachel, J. (eds) Einstein and the History of General Relativity, pp. Birkhäuser, Boston

    Google Scholar 

  • Géhéniau, J., Debever, R.: Bull. Classe Sci. Acad. R. Belge. 42, 114, 252, 313, 608 (1956)

  • Géhéniau J. and Debever R. (1956). Helv. Phys. Acta Suppl. 4: 101

    Google Scholar 

  • Komar A. (1958). Phys. Rev. 111: 1182–1187

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bergmann P.G. and Komar A. (1960). Poisson brackets between locally defined observables in general relativity. Phys. Rev. Lett. 4: 432–433

    Article  ADS  Google Scholar 

  • Bergmann P.G. (1961). Phys. Rev. 124: 274–278

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bergmann P.G. (1961). Observables in general relativity. Rev. Modern Phys. 33: 510–514

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • DeWitt B. (1962). The quantization of geometry. In: Witten, L. (eds) Gravitation: an introduction to current research, pp. Wiley, New York

    Google Scholar 

  • Rovelli C. (1991). Is there an incompatability between the ways in which time is treated in general relativity and in standard quantum mechanics?. In: Ashtekar, A. and Stachel, J. (eds) Conceptual Problems of Quantum Gravity, pp. Birkhäuser, Boston

    Google Scholar 

  • Rovelli C. (1991). Quantum mechanics without time: a model. Phys. Rev. D 42: 2638–2646

    Article  ADS  Google Scholar 

  • Rovelli C. (1991). Time in quantum gravity: physics beyond the Schrödinger regime. Phys. Rev. D 43: 442–456

    Article  ADS  MathSciNet  Google Scholar 

  • Marolf D. (1995). Quantum observables and recollapsing dynamics. Class. Quant. Grav. 12: 1199 [gr-qc/9404053]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Isham, C.J.: Canonical quantum gravity and the problem of time. In: Presented at the 19th International Colloquium on Group Theoretical Methods in Physics, Salamanca, Spain (1992) [gr-qc/9210011]

  • Kuchar, K.: Time and the interpretations of quantum gravity. In: Kunstatter, G., Vincent, D.E., Williams, J.G. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. University of Winnipeg, 16–18 May, 1991. World Scientific, Singapore (1992)

  • Smolin, L.: The present moment in quantum cosmology: challenges to the arguments for the elimination of time. [gr-qc/0104097]

  • Pons J.M., Salisbury D.C. and Shepley L.C. (1997). Gauge transformations in the Lagrangian and Hamiltonian formalisms of generally covariant theories. Phys. Rev. D 55: 658–668 [gr-qc/9612037]

    Article  ADS  MathSciNet  Google Scholar 

  • Pons J.M., Salisbury D.C. and Shepley L.C. (2000). Gauge transformations in Einstein–Yang–Mills theories. J. Math. Phys. 41: 5557–5571 [gr-qc/9912086]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Pons J.M., Salisbury D.C. and Shepley L.C. (2000). The gauge group in the real triad formulation of general relativity. Gen. Rel. Grav. 32: 1727–1744 [gr-qc/9912087]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Pons J.M., Salisbury D.C. and Shepley L.C. (2000). Gauge group an reality conditions in Ashtekar’s formulation of general relativity. Phys. Rev. D 62: 064026–064040 [gr-qc/9912085]

    Article  ADS  MathSciNet  Google Scholar 

  • Bojowald M. (2003). Homogeneous loop quantum cosmology. Class. Quant. Grav. 20: 2595–2615 [gr-qc/0303073]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bojowald M. (2002). Isotropic loop quantum cosmology. Class. Quant. Grav. 19: 2717–2742 [gr-qc/0202077]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ashtekar A. and Samuel J. (1991). Bianchi cosmology: the role of spatial topology. Class. Quant. Grav. 8: 2191

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Pons J.M., Shepley L.C. (1998) Dimensional reduction and gauge group reduction in Bianchi-type cosmology. Phys. Rev. D 58: 024001 [gr-qc/9805030]

    Article  ADS  MathSciNet  Google Scholar 

  • Bergmann P.G. and Komar A. (1972). The coordinate group symmetries of general relativity. Int. J. Theor. Phys. 5: 15–28

    Article  MathSciNet  Google Scholar 

  • Dirac P.A.M. (1963). The evolution of the physicist’s picture of nature. Sci. Am. 208: 45

    Article  Google Scholar 

  • Barbour J. (1999). The End of Time. Oxford University Press, New York

    Google Scholar 

  • Kuchar K.V. (1971). Canonical quantization of cylindrical gravitational waves. Phys. Rev. D 4: 955

    Article  ADS  MATH  Google Scholar 

  • Kouletsis I. and Kuchar K.V. (2002). Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model. Phys. Rev. D 65: 125026

    Article  ADS  MathSciNet  Google Scholar 

  • Isham C.J. and Kuchar K.V. (1985). Representations of space–time diffeomorphisms. 1. Canonical parametrized field theories. Ann. Phys. 164: 288

    Article  ADS  MathSciNet  Google Scholar 

  • Isham C.J. and Kuchar K.V. (1985). Representations of space–time diffeomorphisms. 2. Canonical geometrodynamics. Ann. Phys. 164: 316

    Article  ADS  MathSciNet  Google Scholar 

  • Kuchar K.V. and Torre C.G. (1991). Gaussian reference fluid and interpretation of quantum geometrodynamics. Phys. Rev. D 43: 419

    Article  ADS  MathSciNet  Google Scholar 

  • Brown J.D., Kuchar K.V. (1995) Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51: 5600 [gr-qc/9409001]

    Article  ADS  MathSciNet  Google Scholar 

  • Bicak J., Kuchar K.V. (1997) Null dust in canonical gravity. Phys. Rev. D 56: 4878 [gr-qc/9704053]

    Article  ADS  MathSciNet  Google Scholar 

  • Drittrich B. (2007) Partial and complete observables for Hamiltonian constrained systems. Gen. Rel. Grav. 39, 1891–1927 [gr-qc/0411013]

    Article  ADS  Google Scholar 

  • Drittrich B. (2006) Partial and complete observables for canonical general relativity. Class. Quant. Grav. 23: 6155 [gr-qc/0507106]

    Article  ADS  Google Scholar 

  • Rovelli C. (2002) Partial observables. Phys. Rev. D 65: 124013 [gr-qc/0110035]

    Article  ADS  MathSciNet  Google Scholar 

  • Rovelli C. (1999) The projector on physical states in loop quantum gravity. Phys. Rev. D 59: 104015 [gr-qc/9806121]

    Article  ADS  MathSciNet  Google Scholar 

  • Kuchar K.V. (1992). Extrinsic curvature as a reference fluid in canonical gravity. Phys. Rev. D 45: 4443

    Article  ADS  MathSciNet  Google Scholar 

  • Pons, J.M., Salisbury, D.C.: Invariants for cylindrical gravitational waves. (in preparation)

  • Salisbury D.C. (2003) Gauge fixing and observables in general relativity. Mod. Phys. Lett. A 18: 2475–2482 [gr-qc/0310095]

    Article  ADS  MathSciNet  Google Scholar 

  • Salisbury, D.C., Schmitz, A.: A generalized Schrödinger equation for loop quantum cosmology. [gr-qc/0702132]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Salisbury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salisbury, D.C., Helpert, J. & Schmitz, A. Reparameterization invariants for anisotropic Bianchi I cosmology with a massless scalar source. Gen Relativ Gravit 40, 1475–1498 (2008). https://doi.org/10.1007/s10714-007-0541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0541-0

Keywords

Navigation