Skip to main content
Log in

Closed-form solutions of the Wheeler–DeWitt equation in a scalar-vector field cosmological model by Lie symmetries

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We apply as selection rule to determine the unknown functions of a cosmological model the existence of Lie point symmetries for the Wheeler–DeWitt equation of quantum gravity. Our cosmological setting consists of a flat Friedmann–Robertson–Walker metric having the scale factor a(t), a scalar field with potential function \(V(\phi )\) minimally coupled to gravity and a vector field of its kinetic energy is coupled with the scalar field by a coupling function \(f(\phi )\). Then, the Lie symmetries of this dynamical system are investigated by utilizing the behavior of the corresponding minisuperspace under the infinitesimal generator of the desired symmetries. It is shown that by applying the Lie symmetry condition the form of the coupling function and also the scalar field potential function may be explicitly determined so that we are able to solve the Wheeler–DeWitt equation. Finally, we show how we can use the Lie symmetries in order to construct conservation laws and exact solutions for the field equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Recently in the literature a vector field which satisfies the condition (1) has been termed as “Noether Gauge Symmetry”, see [510]. This is incorrect terminology, since condition (1) is that which has been introduced by E. Noether in her original work. The function, g, of (1) is a boundary term (not a gauge function) introduced to allow for the infinitessimal transformations which in the value of the Action Integral produced by the infinitesimal change in the boundary of the domain caused by the infinitesimal transformation of the variables in the Action Integral.

  2. In the following we consider \(\omega \ne 0\) and \(f_{0}=1.\)

  3. There is also the Lie symmetry \(X_{B}=B\left( a,\phi ,\zeta \right) \partial _{\Psi }\), where \(B\left( a,\phi ,\zeta \right) \) is a solution of (32). However since \(X_{B}\) is a trivial symmetry we will omit it.

  4. The symbolic package Sym for Mathematica have been used to test the resutls [47].

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  2. Bluman, G.W., Kumei, S.: Symmetries of Differential Equations. Springer, New York (1989)

    Book  Google Scholar 

  3. Stephani, H.: Differential Equations: Their Solutions Using Symmetry. Cambridge University Press, New York (1989)

    Google Scholar 

  4. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (2000)

    MATH  Google Scholar 

  5. Aslam, A., Jamil, M., Momeni, D., Myrzakulov, R., Rashid, M.A., Raza, M.: Astrophys. Space Sci. 348, 533 (2013)

    Article  ADS  Google Scholar 

  6. Jhangeer, A., Shamir, M.F., Naz, T., Iftikhar, N.: Int. J. Theor. Phys. 54, 2343 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gemin, G., Kucukakca, Y., Sucu, Y.: Adv. High Energy Phys. 2015, 567395 (2015)

    Google Scholar 

  8. Aslam, A., Jamil, M., Momeni, D., Myrzakulov, R.: Can. J. Phys. 91, 93 (2013)

    Article  Google Scholar 

  9. Hussain, I., Jamil, M., Mahomed, F.M.: Astrophys. Space Sci. 337, 373 (2012)

    Article  ADS  MATH  Google Scholar 

  10. Jamil, M., Ali, S., Momeni, D., Myrzakulov, R.: Eur. Phys. J. C 72, 1998 (2012)

    Article  ADS  Google Scholar 

  11. Cotsakis, S., Leach, P.G.L., Pantazi, H.: Grav. Cosm. 4, 314 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Zhang, Yi, Gong, Y.G., Zhu, Z.H.: Phys. Lett. B 688, 13 (2010)

    Article  ADS  Google Scholar 

  13. Jamil, M., Mahomed, F.M., Momeni, D.: Phys. Lett. B 702, 315 (2011)

    Article  ADS  Google Scholar 

  14. Capozziello, S., Lambiase, G.: Gen. Relativ. Gravit. 32, 673 (2000). arXiv:gr-qc/9912083

  15. Roshan, M., Shojai, F.: Phys. Lett. B 668, 238 (2008). arXiv:0809.1272 [gr-qc]

  16. Kucukakca, Y., Camci, U., Semiz, I.: Gen. Relativ. Gravit. 44, 1893 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kucukakca, Y.: Eur. Phys. J. C 74, 3086 (2014)

    Article  ADS  Google Scholar 

  18. Motavali, H., Capozziello, S., Rowshan, M., Jog, A.: Phys. Lett. B 666, 10 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wei, H., Guo, X.J., Wang, L.F.: Phys. Lett. B 707, 298 (2012)

    Article  ADS  Google Scholar 

  20. Vakili, B.: Phys. Lett. B 664, 16 (2008). arXiv:0804.3449 [gr-qc]

  21. Vakili, B.: Phys. Lett. B 669, 206 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Vakili, B., Khazaie, F.: Class. Quantum Grav. 29, 035015 (2012). arXiv:1109.3352 [gr-qc]

  23. Vakili, B., Khosravi, N., Sepangi, H.R.: Class. Quantum Grav. 24, 931 (2007) arXiv:gr-qc/0701075

  24. Dimakis, N., Christodoulakis, T., Terzis, P.A.: J. Geom. Phys. 77, 97 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Terzis, P.A., Dimakis, N., Christodoulakis, T.: Phys. Rev. D 90, 123543 (2014)

    Article  ADS  Google Scholar 

  26. Christodoulakis, T., Dimakis, N., Terzis, P.A., Vakili, B., Melas, E., Grammenos, Th: Phys. Rev. D 89, 044031 (2014)

    Article  ADS  Google Scholar 

  27. Paliathanasis, A., Tsamparlis, M., Basilakos, S.: Phys. Rev. D. 84, 123514 (2011)

    Article  ADS  Google Scholar 

  28. Paliathanasis, A., Tsamparlis, M.: Phys. Rev. D. 90, 043529 (2014)

    Article  ADS  Google Scholar 

  29. Basilakos, S., Tsamparlis, M., Paliathanasis, A.: Phys. Rev. D. 83, 103512 (2011)

    Article  ADS  Google Scholar 

  30. Wiltshire, D.: An Introduction to Quantum Cosmology (2001). arXiv:gr-qc/0101003

  31. Halliwell, J.J.: Introductory Lectures on Quantum Cosmology (2009). arXiv:0909.2566 [gr-qc]

  32. Paliathanasis, A., Tsamparlis, M., Basilakos, S., Barrow, J.D.: Phys. Rev. D. 91, 123535 (2015)

    Article  ADS  Google Scholar 

  33. Tartaglia, A., Radicella, N.: Phys. Rev. D 76, 083501 (2007). arXiv:0708.0675 [gr-qc]

  34. Artymowski, M., Lalak, Z., Cosmol, J.: Astropart. Phys. JCAP09, 017 (2011). arXiv:1012.2776 [gr-qc]

  35. Sadatian, S.D.: Int. J. Mod. Phys. D 21, 1250063 (2012). arXiv:1206.2438 [gr-qc]

  36. Akarsu, O., Dereli, T., Oflaz, N.: Class. Quantum Grav. 31, 045020 (2014). arXiv:1311.2573 [gr-qc]

  37. Maleknejad, A., Sheikh-Jabbari, M.M., Soda, J.: Phys. Rep. 528, 161 (2013). arXiv:1212.2921

  38. Vakili, B.: Phys. Lett. B 739, 400 (2014). arXiv:1410.3131

  39. Paliathanasis, A., Tsamparlis, M.: Int. J. Geom. Methods Mod. Phys. 11, 1450037 (2014). arXiv:1312.3942

  40. Paliathanasis, A., Tsamparlis, M., Mustafa, M.T.: Int. J. Geom. Methods Mod. Phys. 12, 1550033 (2015). arXiv:1411.0398

  41. Kamran, N., McLenaghan, R.G.: Lett. Math. Phys. 9, 65 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Tsamparlis, M., Paliathanasis, A., Karpathopoulos, L.: Gen. Relativ. Gravit. 47, 15 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Govinger, K.S.: J. Math. Anal. Appl. 258, 720 (2001)

    Article  MathSciNet  Google Scholar 

  44. Anderson, I.M., Fels, M.E., Torre, C.G.: Commun. Math. Phys. 212, 653 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Abraham-Shrauner, B., Govinder, K.S., Arrigo, D.J.: J. Phys. A: Math. Gen. 39, 5739 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Gandarias, M.L.: J. Math. Anal. Appl. 348, 752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dimas, S., Tsoubelis, D.: SYM: A New Symmetry-Finding Package for Mathematica, Group Analysis of Differential Equations. In: Ibragimov, N.H., Sophocleous, C., Damianou, P.A. (eds.), p. 64, University of Cyprus, Nicosia, (2005)

Download references

Acknowledgments

AP acknowledges Prof. PGL Leach, Sivie Govinder, as also DUT for the hospitality provided and the UKNZ of South Africa for financial support while part of this work carried out during his visits in South Africa. The research of AP was supported by FONDECYT postdoctoral grant no. 3160121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andronikos Paliathanasis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliathanasis, A., Vakili, B. Closed-form solutions of the Wheeler–DeWitt equation in a scalar-vector field cosmological model by Lie symmetries. Gen Relativ Gravit 48, 13 (2016). https://doi.org/10.1007/s10714-015-2010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-2010-5

Keywords

Navigation