Skip to main content
Log in

Rastall-Maxwell approach for anisotropic charged strange stars

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work we investigate the Rastall-Maxwell theory around the strange quark matter (SQM). Some solutions are obtained by solving the Modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of Rastall gravity. Analysis are performed about the energy condition, the mass-radius relation, the modified TOV equation, the redshift and the stability of the system is checked by exploring the adiabatic index, the compactification factor and the causality condition in order to verify the physical consistency of our model. It comes from our results that for physical values of Rastall parameter, the stellar system is more massive compared to its size. Hence, it emerges from our work that the alternative Rastall theory is a suitable candidate to explain the behavior of massive stellar objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No new data were created or analysed in this study.

References

  1. Bodmer, A.R.: Collapsed nuclei. Phys. Rev. D 4, 1601–1606 (1971)

    Article  ADS  Google Scholar 

  2. Witten, E.: Cosmic separation of phases. Phys. Rev. D 30, 272–285 (1984)

    Article  ADS  Google Scholar 

  3. Baade, W., Zwicky, F.: Remarks on super-novae and cosmic rays. Phys. Rev. 46, 76–77 (1934)

    Article  ADS  Google Scholar 

  4. Lattimer, J.M., Prakash, M.: The physics of neutron stars. Science 304, 536–542 (2004)

    Article  ADS  Google Scholar 

  5. Steiner, A.W., Prakash, M., Lattimer, J.M., Ellis, P.J.: Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 410, 325–375 (2005)

    Article  ADS  Google Scholar 

  6. Bombaci, I., Parenti, I., Vidana, I.: Quark deconfinement and implications for the radius and the limiting mass of compact stars. Astrophy. J. 614, 314–325 (2004)

    Article  ADS  Google Scholar 

  7. Staff, J., Ouyed, R., Bagchi, M.: A three-stage model for the inner engine of gamma-ray bursts: prompt emission and early afterglow. Astrophy. J. 667, 340–350 (2007)

    Article  ADS  Google Scholar 

  8. Herzog, M., Röpke, F.K.: Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star. Phys. Rev. D 84, 083002 (2011)

    Article  ADS  Google Scholar 

  9. Duncan, R.C., Thompson, C.: Astrophys. J. 392, L9 (1992)

    Article  ADS  Google Scholar 

  10. Thompson, C., Duncan, R.C.: Astrophys. J. 473, 322 (1996)

    Article  ADS  Google Scholar 

  11. Ibrahim, A.I., Safi-Harb, S., Swank, J.H., Parke, W., Zane, S.: Astrophys. J. 574, L51 (2002)

    Article  ADS  Google Scholar 

  12. Chakraborty, S., Bandyopadhyay, D., Pal, S.: Phys. Rev. Lett. 78, 2898 (1997)

    Article  ADS  Google Scholar 

  13. Tatsumi, T.: Phys. Lett. B 489, 280 (2000)

    Article  ADS  Google Scholar 

  14. Isayev, A.A., Yang, J.: Phys. Rev. C 69, 025801 (2004)

    Article  ADS  Google Scholar 

  15. Isayev, A.A.: Phys. Rev. C 74, 057301 (2006)

    Article  ADS  Google Scholar 

  16. Schwarzschild, K.: Sitzungsber. Preuß. Akad. Wissenschaften Berlin Phys. Math. Kl 1916, 189–196

  17. Schwarzschild, K.: Kugel ausinkompressiblerFlüssigkeitnach der EinsteinschenTheorie. Sitzungsberichte der KöniglichPreussischen Akademie der Wissenschaftenzu Berlin, Phys.-Math. Klasse 1916, 424–434. arXiv: physics/9912033]

  18. Ruderman, R.: Ann. Rev. Astron. Astrophys. 10, 427–476 (1972)

    Article  ADS  Google Scholar 

  19. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53–130 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F., Collins, R.A.: Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968)

    Article  ADS  Google Scholar 

  21. Hossein, S.M., Rahaman, F., Naskar, J., Kalam, M., Ray, S.: Anisotropic compact stars with variablecosmological constant. Int. J. Mod. Phys. D 21, 1250088 (2012)

    Article  ADS  MATH  Google Scholar 

  22. Kalam, M., Rahaman, F., Molla, S., Hossein, S.M.: Anisotropic quintessence stars. Astrophys. Space Sci. 349, 865–871 (2014)

    Article  ADS  Google Scholar 

  23. Krori, K.D., Barua, J.: A singularity-free solution for a charged fluid sphere in general relativity. J. Phys. A: Math. Gen. 8, 508–511 (1975)

    Article  ADS  MATH  Google Scholar 

  24. Kalam, M., Rahaman, F., Ray, S., Hossein, M., Karar, I., Naskar, J.: Eur. Phys. J. C 72, 2248 (2012)

    Article  ADS  Google Scholar 

  25. Paul, B.C., Deb, R.: Relativistic solutions of anisotropic compact objects. Astrophys. Space Sci. 354, 421–430 (2014)

    Article  ADS  Google Scholar 

  26. Cheng, K.S., Dai, Z.G., Lu, T.: Strange stars and related astrophysical phenomena. Int. J. Mod. Phys. D 7, 139–176 (1998)

    Article  ADS  Google Scholar 

  27. Bhar, P.: Singularity-free anisotropic strange quintessence star. Astrophys. Space Sci. 356, 309–318 (2015)

    Article  ADS  Google Scholar 

  28. Abbas, G., Zubair, M., Mustafa, G.: Anisotropic strange quintessence stars in f(R) gravity. Astrophys. Space Sci. 358, 26 (2015)

    Article  ADS  Google Scholar 

  29. Rahaman, F., Chakraborty, K., Kuhfittig, P.K.F., Shit, G.C., Rahman, M.: Eur. Phys. J. C 74, 3126 (2014)

    Article  ADS  Google Scholar 

  30. Arbañil, J.D.V., Malheiro, M.: Radial stability of anisotropic strange quark stars. J. Cosmol. Astropart. Phys. 11, 012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Murad, M.H.: Some analytical models of anisotropic strange stars. Astrophys. Space Sci. 361, 20 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Mak, M.K., Harko, T.: Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D 13, 149–156 (2004)

    Article  ADS  MATH  Google Scholar 

  33. Abbas, G.: Cardy-Verlinde formula of non-commutative schwarzschild black hole. Adv. High Energy Phys. 2014, 306256 (2014)

    Article  MATH  Google Scholar 

  34. Abbas, G.: Collapse and expansion of anisotropic plane symmetric source. Astrophys. Space Sci. 350, 307–311 (2014)

    Article  ADS  Google Scholar 

  35. Abbas, G., Sabiullah, U.: Geodesic study of regular Hayward black holeGeodesic study of regular Hayward black hole. Astrophys. Space Sci. 352, 769–774 (2014)

    Article  ADS  Google Scholar 

  36. Abbas, G.: Phantom energy accretion onto a black hole in Horava-Lifshitz gravity. Sci. China Phys. Mech. Astron. 57, 604–607 (2014)

    Article  ADS  Google Scholar 

  37. Abbas, G.: Effects of electromagnetic field on the collapse and expansion of anisotropic gravitating source. Astrophys. Space Sci. 352, 955–961 (2014)

    Article  ADS  Google Scholar 

  38. Abbas, G., Kanwal, A., Zubair, M.: Anisotropic compact stars in \(f(T)\) gravity. Astrophys. Space Sci. 357, 109 (2015)

    Article  ADS  Google Scholar 

  39. Abbas, G., Nazeer, S., Meraj, M.A.: Cylindrically symmetric models of anisotropic compact objects. Astrophys. Space Sci. 354, 449–455 (2014)

    Article  ADS  Google Scholar 

  40. Abbas, G., Momeni, D., Ali, M.A., Myrzakulov, R., Qaisar, S.: Anisotropic compact stars in \(f(G)\) gravity. Astrophys. Space Sci. 357, 158 (2015)

    Article  ADS  Google Scholar 

  41. Deb, D., Ghosh, S., Maurya, S.K., Khlopov, M., Ray, S.: Anisotropic compact stars in \(f(T)\) gravity under Karmarkar condition. Tech Vistas 1, 1–20 (2018)

    Google Scholar 

  42. Das, A., Ghosh, S., Deb, D., Rahaman, F., Ray, S.: Study of gravastars under \(f(T)\) gravity. Nucl. Phys. B 954, 114986 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nojiri, S., Odintsov, S.D.: Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 631, 1–6 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Boko, R.D., Salako, I.G.: Infinite-time singularities models and possible avoidance. Ann. Phys. 432, 168569 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Capozziello, S., De Laurentis, M., Farinelli, R., Odintsov, S.D.: The mass-radius relation for neutron stars in f(R) gravity. Phys. Rev. D 93, 023501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. Artyom, V., Salvatore Capozziello, A., Odintsov, S.D.: Extreme neutron stars from extended theories of gravity. J. Cosmol. Astropart. Phys. 2015, 001 (2015)

    Article  MathSciNet  Google Scholar 

  47. Astashenok, Artyom V., Capozziello, Salvatore, Odintsov, Sergei D.: Maximal neutron star mass and the resolution of hyperon puzzle in modified gravity. Phys. Rev. D 89, 103509 (2014)

    Article  ADS  Google Scholar 

  48. Artyom, V., Salvatore Capozziello, A., Odintsov, S.D.: Further stable neutron star models from f(R) gravity. J. Cosmol. Astropart. Phys. 2013, 040 (2013)

    Article  Google Scholar 

  49. Astashenok, A.V., Capozziello, S., Odintsov, S.D.: Nonperturbative models of quark stars in f(R) gravity. Phys. Lett. B 742(6), 160–166 (2015)

    Article  ADS  MATH  Google Scholar 

  50. Kalin, S., Doneva, V., Yazadjiev, D.D., Kokkotas, S.S., Kostas, D.: Gravitational wave asteroseismology of neutron and strange stars in R2 gravity. Phys. Rev. D 92, 043009 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  51. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rept. 692, 1–104 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Odintsov, S.D., Oikonomou, V.K., Fronimos, F.P., Fasoulakos, K.V.: Unification of a bounce with a viable dark energy era in Gauss-Bonnet gravity. Phys. Rev. D 102, 104042 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  53. Oikonomou, V.K.: Singular bouncing cosmology from Gauss-Bonnet modified gravity. Phys. Rev. D 92, 124027 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. Capozziello, Salvatore.: Mariafelicia De Laurentis, Extended Theories of Gravity, Physrep 2011.09.003

  55. Debabrata, D., Farook, R., Saibal, R., Guha, B.K.: Strange stars in \(f(R, T)\) gravity. JCAP 03, 044 (2018)

    ADS  MATH  Google Scholar 

  56. Deb, Debabrata, Ketov, Sergei V., Khlopov, Maxim, Ray, Saibal: Study on charged strange stars in \(f(R, T)\) gravity. JCAP 10, 070 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Deb, Debabrata, et al.: Anisotropic strange stars in the Einstein-Maxwell spacetime. EPJ C 78, 465 (2018)

    ADS  Google Scholar 

  58. Salako, I.G., et al.: Study on anisotropic strange stars in \(f(T,{\cal{T}})\) gravity. Universe 6(10), 167 (2020)

    Article  ADS  Google Scholar 

  59. Salako, I.G., Jawad, A., Chattopadhyay, S.: Holographic dark energy reconstruction in \(f(T,\cal{T})\) gravity. Astrophys. Space Sci. 358, 13 (2015)

    Article  ADS  Google Scholar 

  60. Ganiou, M.G., Salako, I.G., Houndjo, M.J.S., Tossa, J.: \(f(T,\cal{T})\) cosmological models in phase space. Astrophys. Space Sci. 361, 57 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Ganiou, M.G., Salako, I.G., Houndjo, M.J.S., Tossa, J.: Geodesic deviation equation in \(\Lambda \)CDM \( f(T,\cal{T})\) gravity. Int. J. Theor. Phys. 55, 3954–3972 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Junior, E.L.B., Rodrigues, M.E., Salako, I.G., Houndjo, M.J.S.: Reconstruction, thermodynamics and stability of the \(\Lambda \)CDM model in \(f(T,\cal{T})\) gravity. Class. Quantum Gravit. 33, 125006 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Farrugia, G., Said, J.L.: Growth factor in \(f(T,\cal{T})\) gravity. Phys. Rev. D 94, 124004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  64. Arouko, M.Z., Salako, I.G., Kanfon, A.D., Houndjo, M.J.S., Baffou, E.: Rip cosmologies, Wormhole Solutions and Big Trip in the \(f(T,{\cal{T}})\) theory of gravity. arXiv (2020) arXiv:2004.06000 [gr-qc]

  65. Ghosh, S., Kanfon, A.D., Das, A., Houndjo, M.J.S., Salako, I.G., Ray, S.: Gravastars in \(f(T,\cal{T})\)gravity. Int. J. Mod. Phys. A 35, 2050017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  66. Salako, Ines. G., et al.: Compact stellar models in modified gravity, IJMPD(2021) 2140003

  67. Pace, M., Said, J.L.: Eur. Phys. J. C 77, 62 (2017)

    Article  ADS  Google Scholar 

  68. Rastall, P.: Generalization of the einstein theory. Phys. Rev. D 6, 3357 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Rastall, P.: A theory of gravity. Can. J. Phys. 54, 66 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Al-Rawaf, A.S., Taha, M.O.: A resolution of the cosmological age puzzle. Phys. Lett. B 366, 69 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  71. Al-Rawaf, A.S., Taha, M.O.: Cosmology of general relativity without energy- moment.m conservation. Gen. Rel. Grav. 28, 935 (1996)

    Article  ADS  MATH  Google Scholar 

  72. Smalley, L.L.: Variational principle for a prototype Rastall theory of gravitation. Nuovo Cim. B 80(1), 42 (1984)

    Article  ADS  Google Scholar 

  73. Batista, C.E.M., Fabris, J.C., Daouda, M.H.: Testing the Rastall’s theory using matter power spectrum. Nuovo Cim. B 125, 957 (2010)

    Google Scholar 

  74. Fabris, J.C., Guio, T.C.C., Hamani Daouda, M., Piattella, O.F.: Scalar models for the generalized Chaplygin gas and the structure formation constraints. Grav Cosmol. 17, 259 (2011)

    Article  ADS  MATH  Google Scholar 

  75. Fabris, J.C., Daouda, M.H., Piattella, O.F.: Note on the evolution of the gravitational potential in Rastall scalar field theories. Phys. Lett. B 711(3–4), 232 (2012)

    Article  ADS  Google Scholar 

  76. Capone, M., Cardone, V.F., Ruggiero, M.L.: Accelerating cosmology in Rastall’s theory. Nuovo Cim. B 125, 1133 (2011)

    Google Scholar 

  77. Tolman, R.C.: Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  78. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  79. Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: Phys. Rev. D 9, 3471 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  80. Rahaman, F., Chakraborty, K., Kuhfittig, P.K.F., Shit, G.C., Rahman, M.: Eur. Phys. J. C 74, 3126 (2014)

    Article  ADS  Google Scholar 

  81. Mak, M.K., Harko, T.: Proc. Roy. Soc. Lond. A 459, 393 (2003)

    Article  ADS  Google Scholar 

  82. Moraes, P.H.R.S., Correa, R.A.C., Lobato, R.V.: JCAP 1707, 029 (2017)

    Article  ADS  Google Scholar 

  83. de Felice, F., Yu, Y.Q., Fang, J.: Relativistic charged spheres. Mon. Not. R. Astron. Soc. 277, L17 (1995)

    ADS  Google Scholar 

  84. Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., Hessels, J.W.T.: Shapiro delay measurement of a two solar mass neutron star. Nat. 467, 1081 (2010). [arXiv:1010.5788]

    Article  ADS  Google Scholar 

  85. Rawls, M.L., Orosz, J.A., McClintock, J.E., Torres, M.A.P., Bailyn, C.D., Buxton, M.M.: Refined neutron-star mass determinations for six eclipsing X-Ray pulsar binaries. Astrophys. J. 730, 25 (2011). [arXiv:1101.2465]

    Article  ADS  Google Scholar 

  86. Guver, T., Özel, F., Cabrera-Lavers, A., Wroblewski, P.: The Distance, Mass, and Radius of the Neutron Star in \(4U 1608-52\), Astrophys. J. 712 (2010) 964 [arXiv:0811.3979]

  87. Freire, P.C.C., et al.: On the nature and evolution of the unique binary pulsar \(J1903+0327\). Mon. Not. R. Astron. Soc. 412, 2763 (2011). [arXiv:1011.5809]

    Article  ADS  Google Scholar 

  88. Guver, T., Wroblewski, P., Camarota, L., Özel, F.: The mass and radius of the neutron star in \(4U 1820--30\). Astrophys. J. 719, 1807 (2010)

    Article  ADS  Google Scholar 

  89. Özel, F., Guver, T., Psaltis, D.: The mass and radius of the neutron star in \(EXO 1745--248\). Astrophys. J. 693, 1775 (2009)

    Article  ADS  Google Scholar 

  90. Elebert, P., et al.: Optical spectroscopy and photometry of SAX J1808.4–3658 in outburst. Mon Not R Astron. Soc. 395, 884 (2009)

    Article  ADS  Google Scholar 

  91. Abubekerov, M.K., Antokhina, E.A., Cherepashchuk, A.M., Shimanskii, V.V.: The mass of the compact object in the x-Ray binary her X-1/HZ her. Astron. Rep. 52, 379 (2008). [arXiv:1201.5519]

    Article  ADS  Google Scholar 

  92. Deb, D., Rahaman, F., Ray, S., Guha, B.K.: Strange stars in \(f(R,\cal{T})\) gravity. J. Cosmol. Astropart. Phys. 03, 044 (2018)

    Article  ADS  MATH  Google Scholar 

  93. Maurya, S.K., Gupta, Y.K., Ray, S., Deb, D.: Eur. Phys. J. C 76, 693 (2016)

    Article  ADS  Google Scholar 

  94. León, J.P.D.: Gen. Rel. Gravit. 25, 1123 (1993)

    Article  ADS  Google Scholar 

  95. Tolman, R.C.: Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  96. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  97. Herrera, L.: Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  98. Chandrasekhar, S.: Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  99. Heintzmann, H., Hillebrandt, W.: Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  100. Hillebrandt, W., Steinmetz, K.O.: Astron. Astrophys. 53, 283 (1976)

    ADS  Google Scholar 

  101. Bombaci, I.: Astron. Astrophys. 305, 871 (1996)

    ADS  Google Scholar 

  102. Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitation theory and gravitational collapse. University of Chicago Press, Chicago (1965)

    Google Scholar 

  103. Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron stars 1: equation of state and structure, p. 600. Springer, New York (2007)

    Book  Google Scholar 

  104. Chandrasekhar, S.: The dynamical instability of gaseous masses approaching the schwarzschild limit in general relativity. Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Chandrasekhar, S.: Dynamical instability of gaseous masses approaching the schwarzschild limit in general relativity. Phys. Rev. Lett. 12, 114 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Heintzmann, H., Hillebrandt, W.: Neutron stars with an anisotropic equation of state - Mass, redshift and stability. Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  107. Biswas, S., Shee, D., Ray, S., Guha, B.K.: Eur. Phys. J C 80, 175 (2020)

    Article  ADS  Google Scholar 

  108. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  109. Herrera, L.: Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  110. Andréasson, H.: Commun. Math. Phys. 288, 715 (2009)

    Article  ADS  Google Scholar 

  111. Bondi, H.: Proc. R. Soc. Lond. A 281, 39 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  112. Heintzmann, H., Hillebrandt, W.: Astron. Astrophys. 24, 51 (1975)

    ADS  Google Scholar 

  113. Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  114. Barraco, D.E., Hamity, V.H.: Phys. Rev. D. 65, 124028 (2002)

    Article  ADS  Google Scholar 

  115. Böhmer, C.G., Harko, T.: Class. Quantum Gravit. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  116. Ivanov, B.V.: Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

  117. Aziz, A., Ray, S., Rahaman, F., Khlopov, M., Guha, B.K.: Int. J. Mod. Phys. D 28, 1941006 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

The functions \(A_0, A_1,\, A_2,\, A_3\) and  \(A_4\) that appears in the relation (44) (45) and (46) are erpanded as:

$$\begin{aligned} A_{0}=\frac{16 \pi \left( 1+r^2 \alpha (3+B )\right) +\left( 1+5 B +4 r^2 (\alpha +3 \alpha B )\right) \gamma }{16 \pi r^2 \left( 4 \pi (3+B )+(1+3 B ) \gamma \right) } \end{aligned}$$
(65)
$$\begin{aligned} A_{1}=-\frac{16 \pi \left( -B +r^2 \alpha (3+B )\right) +\left( -1+3 B +4 r^2 (\alpha +3 \alpha B )\right) \gamma }{16 \pi r^2 \left( 4 \pi (3+B )+(1+3 B ) \gamma \right) }. \end{aligned}$$
(66)

with

$$\begin{aligned} A_2= & {} A_8\, r^2\Big ( \frac{A_{10}}{A_5 A_{11}} -1\Big )+ \alpha ^2(r^2-r^4) \end{aligned}$$
(67)
$$\begin{aligned} A_3= & {} \frac{5r^2\, A^2_7 A_{11}}{A_{11} A_8 A_{13}}+ \alpha ^2(r^2+r^4) \end{aligned}$$
(68)
$$\begin{aligned} A_4= & {} \frac{1}{4 \alpha ^2 A_8\left( \frac{5 A^2_7 A_{13}}{A_{11} A_8 } - \frac{A_5 A_{11}}{A_8 A^2_7} \right) } \end{aligned}$$
(69)
$$\begin{aligned} A_5= & {} \Big (-180 R^2+320 B \pi R^2 r^2-180 R^2 r^4 \alpha ^2+135 R^2 r^7 \alpha ^3\nonumber \\&\quad -320 B \pi R^2 r^2 \gamma +480 \pi R^2 r^2 (-1+\gamma ) c_2+96 \pi r^4 \nonumber \\&\quad \times \Big (4-\gamma +3 (-1+\gamma ) c_1\Big ) \rho _0+640 \pi R^2 r^2 \rho _c-384 \pi r^4 \rho _c\nonumber \\&\quad -160 \pi R^2 r^2 \gamma \rho _c+ 96 \pi r^4 \gamma \rho _c-480 \pi R^2 r^2 c_1 \rho _c +288 \pi r^4 c_1 \rho _c\nonumber \\&\quad +480 \pi R^2 r^2 \gamma c_1 \rho _c-288 \pi r^4 \gamma c_1 \rho _c\Big ) \end{aligned}$$
(70)
$$\begin{aligned} A_7= & {} \Big (640 B \pi R^2-720 R^2 r^2 \alpha ^2+945 R^2 r^5 \alpha ^3-640 B \pi R^2 \gamma \nonumber \\&\quad +960 \pi R^2 (-1+\gamma ) c_2+384 \pi r^2 \Big (4-\gamma +3 (-1+\gamma ) c_1\Big ) \rho _0\nonumber \\&\quad +1280 \pi R^2 \rho _c-1536 \pi r^2 \rho _c-320 \pi R^2 \gamma \rho _c\nonumber \\&\quad +384 \pi r^2 \gamma \rho _c-960 \pi R^2 c_1 \rho _c+1152 \pi r^2 c_1 \rho _c+960 \pi R^2 \gamma c_1 \rho _c \nonumber \\&\quad -1152 \pi r^2 \gamma c_1 \rho _c\Big ) \end{aligned}$$
(71)
$$\begin{aligned} A_8= & {} - A_5,\; A_{11}= A_7^2\; A_{13} = A_5 \end{aligned}$$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salako, I.G., Houndjo, M.J.S., Baffou, E. et al. Rastall-Maxwell approach for anisotropic charged strange stars. Gen Relativ Gravit 54, 28 (2022). https://doi.org/10.1007/s10714-022-02915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02915-6

Keywords

Navigation