Skip to main content

Advertisement

Log in

Low expression of Neu2 sialidase in the thymus of SM/J mice—existence of neuraminidase positive cells “Neu-medullocyte” in the murine thymus

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We have already reported that the homogenate of the A/J mouse thymus shows a high sialidase activity at the neutral pH region and that in both soluble and membrane fractions optimal pH was 6.5–7 (Kijimoto-Ochiai et al., Glycoconj. J., 20:375–384, 2004). In the present study, we investigated the level of sialidase activities in the thymus of the SM/J mouse, a mouse strain that we know to have a Neu1a allele that reveals a low level of sialidase activity in the liver. We found that while in the A/J thymus the soluble sialidase activity at pH 6.5 was high, the SM/J thymus lacked all such activity. A QTL analysis of SMXA recombinant inbred strains showed that soluble sialidase activity correlated well with the D1Mit8/9 marker on chromosome 1. The murine whole DNA-sequence data and the results of our FISH analysis (Kotani et al., Biochem. Biophys. Res. Comm., 286:250–258, 2001) showed that this location is consistent with the position of Neu2 gene. We confirmed that it is hard to detect the Neu2 enzyme of the SM/J mouse thymus by an anti-Neu2 antibody using a Western blot analysis. We also found that while the mRNA expression of Neu2 was quite normal in the SM/J mouse liver, it was very low in the SM/J mouse thymus. We therefore conclude that the lack of soluble sialidase activity in the SM/J mouse thymus is due to the thymus-specific low expression level of the Neu2 gene. We have previously shown that the sialidase positive cell which contains the Mac-1 and immunoglobulin, and which is located sparsely in the corticomedullar region or medullary region of the A/J mouse thymus (Kijimoto-Ochiai et al., Glycoconj. J., 20:375–384, 2004). We showed now in this paper that the detection of this cell in the SM/J mouse thymus at pH 7.0 was difficult. We propose, therefore, to name the cell “Neu-medullocyte”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kijimoto-Ochiai, S.: CD23 (the low-affinity IgE receptor) as a C-type lectin: a multidomain and multifunctional molecule. Cell Mol. Life Sci. 59, 648–664 (2002)

    Article  PubMed  CAS  Google Scholar 

  2. Kijimoto-Ochiai, S., Doi, N., Matsukawa, H., Fujii, M., Tomobe, K.: Localization of sialidase-positive cells expressing Mac-1 and immunoglobulin in the mouse thymus. Glycoconj. J. 20, 375–384 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Milner, C.M., Smith, S.V., Carrillo, M.B., Taylor, G.L., Hollinshead, M., Campbell, R.D.: Identification of a sialidase encoded in the human major histocompativility complex. J. Biol. Chem. 272, 4549–4558 (1997)

    Article  PubMed  CAS  Google Scholar 

  4. Pshezhetsky, A.V., Richard, C., Michaud, L., Igdoura, S., Wang, S., Elsliger, M.-A., Qu, J., Leclerc, D., Gravel, R., Dallaire, L., Potier, M.: Cloning, expression and chromosomal mapping of human lysosomal sialidase and characterization of mutations in sialidosis. Nat. Genet. 15, 316–320 (1997)

    Article  PubMed  CAS  Google Scholar 

  5. d’Azzo, A., Andria, G., Striscuiglio, P., Galiaard, H.: Galactosialidosis. In: Scriver, C.R., Beaudet, A., Sly, W.S., Valle, D. (eds.) The metabolic and molecular bases of inherited disease, 8th edn, pp. 3811–3826. McGraw-Hill, New York (2001)

    Google Scholar 

  6. Klein, D., Klein, J.: Polymorphism of the Apl (Neu-1) Locus in the mouse. Immunogenetics 16, 181–184 (1982)

    Article  PubMed  CAS  Google Scholar 

  7. Carrillo, M.B., Milner, C.M., Ball, S.T., Snoek, M., Campbell, R.D.: Cloning and characterization of a sialidase from the murine histocompativility-2 complex: low levels of mRNA and a single amino acid mutation are responsible for reduced sialidase activity in mice carrying the Neu1 a allele. Glycobiology 7, 975–986 (1997)

    Article  PubMed  CAS  Google Scholar 

  8. Rottir, R.J., Bonten, E., d’Azzo, A.: A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse. Human Mol. Genet. 7, 313–321 (1998)

    Article  Google Scholar 

  9. Kotani, K., Kuroiwa, A., Saito, T., Matsuda, Y., Koda, T., Kijimoto-Ochiai, S.: Cloning, chromosomal mapping, and characteristic 5′-UTR sequence of murine cytosolic sialidase. Biochem. Biophys. Res. Comm. 286, 250–258 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. Monti, E., Preti, A., Rossi, E., Ballabio, A., Borsani, G.: Cloning and characterization of NEU2, a human gene homologous to rodent soluble sialidases. Genomics 57, 137–143 (1999)

    Article  PubMed  CAS  Google Scholar 

  11. Wada, T., Yoshikawa, Y., Tokuyama, S., Kuwabara, M., Akita, H., Miyagi, T.: Cloning, expression, and chromosomal mapping of a human ganglioside sialidase. Biochem. Biophys. Res. Comm. 261, 21–27 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. Hasegawa, T., Yamaguchi, K., Wada, T., Takeda, A., Itoyama, Y., Miyagi, T.: Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J. Biol. Chem. 275, 8007–8015 (2000)

    Article  PubMed  CAS  Google Scholar 

  13. Comelli, E.M., Amado, M., Lustig, S.R., Paulson, J.C.: Identification and expression of Neu4, a novel murine sialidase. Gene 321, 155–161 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. Monti, E., Bassu, M.T., Bresciani, R., Civini, S., Croci, G.L., Papini, N., Riboni, M., Zanchetti, G., Ballabio, A., Preti, A., Tettamanti, G., Venerando, B., Borsani, G.: Molecular cloning and characterization of Neu4, the fourth member of the human sialidase gene family. Genomics 83, 445–453 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. Seyrantepe, V., Landry, K., Trudel, S., Hassan, J.A., Morales, C.R., Pshezhetsky, A.V.: Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. J. Biol. Chem. 279, 37021–37029 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. Yamaguchi, K., Hata, K., Koseki, K., Shiozaki, K., Akita, H., Wada, T., Moriya, S., Miyagi, T.: Evidence for mitochondrial localization of a novel human sialidase (NEU4). Biochem. J. 390, 85–93 (2005)

    Article  PubMed  CAS  Google Scholar 

  17. Potier, M., Lu-Shun-Yan, D., Womack, J.E.: Neuraminidase deficiency in the mouse. FEBS Lett. 108, 345–348 (1979)

    Article  PubMed  CAS  Google Scholar 

  18. Landolfi, N.F., Leone, J., Womack, J.E., Cook, R.G.: Activation of T lymphocytes results in an increase in H-2-encoded neuraminidase. Immunogenetics 22, 159–167 (1985)

    Article  PubMed  CAS  Google Scholar 

  19. Nishimura, M., Hirayama, N., Serikawa, T., Kanehira, K., Matsushima, Y., Katoh, H., Wakana, S., Kojima, A., Hiai, H.: The SMXA: a new set of recombinant inbred strain of mice consisting of 26 substrains and their genetic profile. Mamm. Genome. 6, 850–857 (1995)

    Article  PubMed  CAS  Google Scholar 

  20. Reisner, Y., Linker-Israeli, M., Sharon, N.: Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell. Immunol. 25, 129–134 (1976)

    Article  PubMed  CAS  Google Scholar 

  21. Lotan, R., Skutelsky, E., Danon, D., Sharon, N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523 (1975)

    PubMed  CAS  Google Scholar 

  22. Manly, K.: A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm. Genome. 4, 303–313 (1993)

    Article  PubMed  CAS  Google Scholar 

  23. Eisenberg, R.A., Theofilopoulos, A.N., Andrews, B.S., Peters, C.J., Thor, L., Dixon, F.J.: Natural thymocytotoxic autoantibodies in autoimmune and normal mice. J. Immunol. 122, 2272–2278 (1979)

    PubMed  CAS  Google Scholar 

  24. Chen, X.-P., Enioutina, E.Y., Daynes, R.A.: The control of IL-4 gene expression in activated murine T lymphocytes. A novel role for neu-1 sialidase. J. Immunol. 158, 3070–3080 (1997)

    PubMed  CAS  Google Scholar 

  25. Tringali, C., Lupo, B., Anastasia, L., Papini, N., Monti, E., Bresciani, R., Tettamanti, G., Venerando, B.: Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. J. Biol. Chem. 282, 14364–14372 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. Hasegawa, T., Sugeno, N., Takeda, A., Matsuzaki-Kobayashi, M., Kikuchi, A., Furukawa, K., Miyagi, T., Itoyama, Y.: Role of Neu4L sialidase and its substrate ganglioside GD3 in neuronal apoptosis induced by catechol metabolites. FEBS Lett. 581, 406–412 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. Nan, X., Carubelli, I., Stamatos, N.M.: Sialidase expression in activated human T lymphocytes influences production of IFN-γ. J. Leukocyte Biol. 81, 284–296 (2006)

    Article  PubMed  Google Scholar 

  28. Liang, F., Seyrantepe, V., Landry, K., Ahmad, R., Ahmad, A., Stamatos, N.M., Pshezhetsky, A.V.: Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J. Biol. Chem. 281, 27526–27538 (2006)

    Article  PubMed  CAS  Google Scholar 

  29. Nakamura, K., Suzuki, M., Taya, C., Inagaki, F., Yamakawa, T., Suzuki, A.: A sialidase-susceptible ganglioside, IV3α(NeuGcα2-8NeuGc)-Gg4Cer, is a major disialoganaglioside in WHT/Ht mouse thymoma and thymocytes. J. Biochem. 110, 832–841 (1991)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study started at the Institute of Immunology/Institute for genetic medicine Hokkaido University when S.K-O was there (H.M., M.F., and K.T. were also there) under the support of a Grant-in-Aid for Scientific Research (C)(2)(07808069) from the Ministry of Education of Japan (1995–1996). Supply of the SM/J, SMXA mice and QTL analysis were done by MN. RT-PCR analysis was done by TK and TS. We are very grateful to Drs. Norimasa Iwasaki and Yuichiro Abe for kind permission to use the real time PCR equipment, and also to Dr. Taeko. Miyagi (Cancer Institute of Miyagi, Japan) for kind gift of anti-Neu2 polyclonal antibody. We also thank Ms. S. Yoshida and Prof. Y. Igarashi (Hokkaido U.), and Ms M. Ishii and Prof. I. Matsuoka (Hokkaido U.) for supporting to use the facilities in ECL-Western blot analysis and in FACS analysis, respectively. The author(s.K-O) would appreciate very much Professor Dr. S. Hakomori (Pacific Northwest Research Institute, and Department of Pathology and Microbiology, University of Washington, Seattle, WA 98122-4327) suggesting to name the new type of sialidase-positive cell when it was published in 2004 (Glycoconjugate J. 20, 375-384). Encouraged by his suggestion, the author named it as “Neu-medullocyte” in this paper, and would like to acknowledge it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kijimoto-Ochiai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kijimoto-Ochiai, S., Koda, T., Suwama, T. et al. Low expression of Neu2 sialidase in the thymus of SM/J mice—existence of neuraminidase positive cells “Neu-medullocyte” in the murine thymus. Glycoconj J 25, 787–796 (2008). https://doi.org/10.1007/s10719-008-9126-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9126-8

Keywords

Navigation