Skip to main content

Advertisement

Log in

Mass spectrometric comparison of N-glycan profiles from Caenorhabditis elegans mutant embryos

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The free-living nematode Caenorhabditis elegans is a well-characterized eukaryotic model organism. Recent glycomic analyses of the glycosylation potential of this worm revealed an extremely high structural variability of its N-glycans. Moreover, the glycan patterns of each developmental stage appeared to be unique. In this study we have determined the N-glycan profiles of wild-type embryos in comparison to mutant embryos arresting embryogenesis early before differentiation and causing extensive transformations of cell identities, which allows to follow the diversification of N-glycans during development using mass spectrometry. As a striking feature, wild-type embryos obtained from liquid culture expressed a less heterogeneous oligosaccharide pattern than embryos recovered from agar plates. N-glycan profiles of mutant embryos displayed, in part, distinct differences in comparison to wild-type embryos suggesting alterations in oligosaccharide trimming and processing, which may be linked to specific cell fate alterations in the embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sulston, J.E., Schierenberg, E., White, J.G., Thomson, J.N.: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983)

    Article  PubMed  CAS  Google Scholar 

  2. Altmann, F., Fabini, G., Ahorn, H., Wilson, I.B.: Genetic model organisms in the study of N-glycans. Biochimie 83, 703–712 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Cipollo, J.F., Awad, A.M., Costello, C.E., Hirschberg, C.B.: N-Glycans of Caenorhabditis elegans are specific to developmental stages. J. Biol. Chem. 280, 26063–26072 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. Cipollo, J.F., Costello, C.E., Hirschberg, C.B.: The fine structure of Caenorhabditis elegans N-glycans. J. Biol. Chem. 277, 49143–49157 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. Hanneman, A.J., Rosa, J.C., Ashline, D., Reinhold, V.N.: Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology 16, 874–890 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. Haslam, S.M., Dell, A.: Hallmarks of Caenorhabditis elegans N-glycosylation: complexity and controversy. Biochimie 85, 25–32 (2003)

    Article  PubMed  CAS  Google Scholar 

  7. Natsuka, S., Adachi, J., Kawaguchi, M., Nakakita, S., Hase, S., Ichikawa, A., Ikura, K.: Structural analysis of N-linked glycans in Caenorhabditis elegans. J. Biochem. 131, 807–813 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. Paschinger, K., Gutternigg, M., Rendic, D., Wilson, I.B.: The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr. Res. 343, 2041–2049 (2008)

    Article  PubMed  CAS  Google Scholar 

  9. Schachter, H.: Protein glycosylation lessons from Caenorhabditis elegans. Curr. Opin. Struct. Biol. 14, 607–616 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Schachter, H.: Glycobiology of Caenorhabditis elegans. In: Kamerling, J.P., Boons, G.-J., Lee, Y.C., Suzuki, A., Taniguchi, N., Voragen, A.G.J. (eds.) Comprehensive Glycoscience: From Chemistry to Systems Biology, Vol. 4: Cell Glycobiology and Development, Health and Disease in Glycomedine, pp. 81–100. Elsevier, Amsterdam (2007)

    Google Scholar 

  11. Schachter, H.: Paucimannose N-glycans in Caenorhabditis elegans and Drosophila melanogaster. Carbohydr. Res. 344, 1391–1396 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. Cipollo, J.F., Awad, A., Costello, C.E., Robbins, P.W., Hirschberg, C.B.: Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides. Proc. Natl. Acad. Sci. U. S. A. 101, 3404–3408 (2004)

    Article  PubMed  CAS  Google Scholar 

  13. Guerardel, Y., Balanzino, L., Maes, E., Leroy, Y., Coddeville, B., Oriol, R., Strecker, G.: The nematode Caenorhabditis elegans synthesizes unusual O-linked glycans: identification of glucose-substituted mucin-type O-glycans and short chondroitin-like oligosaccharides. Biochem. J. 357, 167–182 (2001)

    Article  PubMed  CAS  Google Scholar 

  14. Schachter, H., Chen, S., Zhang, W., Spence, A.M., Zhu, S., Callahan, J.W., Mahuran, D.J., Fan, X., Bagshaw, R.D., She, Y.M., Rosa, J.C., Reinhold, V.N.: Functional post-translational proteomics approach to study the role of N-glycans in the development of Caenorhabditis elegans. Biochem. Soc. Symp. 1–21 (2002)

  15. Williams, S.A., Stanley, P.: Roles for N- and O-glycans in early mouse development. Adv. Exp. Med. Biol. 705, 397–410 (2011)

    Article  PubMed  Google Scholar 

  16. Aoki, K., Perlman, M., Lim, J.M., Cantu, R., Wells, L., Tiemeyer, M.: Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J. Biol. Chem. 282, 9127–9142 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. Brenner, S.: The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    PubMed  CAS  Google Scholar 

  18. Gerdt, S., Dennis, R.D., Borgonie, G., Schnabel, R., Geyer, R.: Isolation, characterization and immunolocalization of phosphorylcholine-substituted glycolipids in developmental stages of Caenorhabditis elegans. Eur. J. Biochem. 266, 952–963 (1999)

    Article  PubMed  CAS  Google Scholar 

  19. Priess, J.R., Schnabel, H., Schnabel, R.: The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 51, 601–611 (1987)

    Article  PubMed  CAS  Google Scholar 

  20. Schnabel, R., Schnabel, H.: Early determination in the C. elegans embryo: a gene, cib-1, required to specify a set of stem-cell-like blastomeres. Development 108, 107–119 (1990)

    PubMed  CAS  Google Scholar 

  21. Kaletta, T., Schnabel, H., Schnabel, R.: Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature 390, 294–298 (1997)

    Article  PubMed  CAS  Google Scholar 

  22. Lehr, T., Geyer, H., Maass, K., Doenhoff, M.J., Geyer, R.: Structural characterization of N-glycans from the freshwater snail Biomphalaria glabrata cross-reacting with Schistosoma mansoni glycoconjugates. Glycobiology 17, 82–103 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. Lehr, T., Frank, S., Natsuka, S., Geyer, H., Beuerlein, K., Doenhoff, M.J., Hase, S., Geyer, R.: N-Glycosylation patterns of hemolymph glycoproteins from Biomphalaria glabrata strains expressing different susceptibility to Schistosoma mansoni infection. Exp. Parasitol. 126, 592–602 (2010)

    Article  PubMed  CAS  Google Scholar 

  24. Geyer, H., Wuhrer, M., Resemann, A., Geyer, R.: Identification and characterization of keyhole limpet hemocyanin N-glycans mediating cross-reactivity with Schistosoma mansoni. J. Biol. Chem. 280, 40731–40748 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008)

    Article  PubMed  CAS  Google Scholar 

  26. Maass, K., Ranzinger, R., Geyer, H., von der Lieth, C.W., Geyer, R.: “Glyco-peakfinder”—de novo composition analysis of glycoconjugates. Proteomics 7, 4435–4444 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. Geyer, H., Schmitt, S., Wuhrer, M., Geyer, R.: Structural analysis of glycoconjugates by on-target enzymatic digestion and MALDI-TOF-MS. Anal. Chem. 71, 476–482 (1999)

    Article  PubMed  CAS  Google Scholar 

  28. Haslam, S.M., Coles, G.C., Morris, H.R., Dell, A.: Structural characterization of the N-glycans of Dictyocaulus viviparus: discovery of the Lewis(x) structure in a nematode. Glycobiology 10, 223–229 (2000)

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, W., Cao, P., Chen, S., Spence, A.M., Zhu, S., Staudacher, E., Schachter, H.: Synthesis of paucimannose N-glycans by Caenorhabditis elegans requires prior actions of UDP-N-acetyl-D-glucosamine:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I, alpha3,6-mannosidase II and a specific membrane-bound beta-N-acetylglucosaminidase. Biochem. J. 372, 53–64 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. Tretter, V., Altmann, F., März, L.: Peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached α1-3 to the asparagine-linked N-acetylglucosamine residue. Eur. J. Biochem. 199, 647–652 (1991)

    Article  PubMed  CAS  Google Scholar 

  31. Sarkar, M., Leventis, P.A., Silvescu, C.I., Reinhold, V.N., Schachter, H., Boulianne, G.L.: Null mutations in Drosophila N-acetylglucosaminyltransferase I produce defects in locomotion and a reduced life span. J. Biol. Chem. 281, 12776–12785 (2006)

    Article  PubMed  CAS  Google Scholar 

  32. Kato, T., Kitamura, K., Maeda, M., Kimura, Y., Katayama, T., Ashida, H., Yamamoto, K.: Free oligosaccharides in the cytosol of Caenorhabditis elegans are generated through endoplasmic reticulum-golgi trafficking. J. Biol. Chem. 282, 22080–22088 (2007)

    Article  PubMed  CAS  Google Scholar 

  33. Kantelhardt, S.R., Wuhrer, M., Dennis, R.D., Doenhoff, M.J., Bickle, Q., Geyer, R.: Fuc(alpha1–>3)GalNAc-: the major antigenic motif of Schistosoma mansoni glycolipids implicated in infection sera and keyhole-limpet haemocyanin cross-reactivity. Biochem. J. 366, 217–223 (2002)

    Google Scholar 

  34. Schachter, H.: The functions of paucimannose N-glycans in Caenorhabditis elegans. Trends Glycosci. Glycotechnol. 21, 131–148 (2009)

    Article  CAS  Google Scholar 

  35. Schnabel, R., Bischoff, M., Hintze, A., Schulz, A.K., Hejnol, A., Meinhardt, H., Hutter, H.: Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. Dev. Biol. 294, 418–431 (2006)

    Article  PubMed  CAS  Google Scholar 

  36. Schnabel, R., Hutter, H., Moerman, D., Schnabel, H.: Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev. Biol. 184, 234–265 (1997)

    Article  PubMed  CAS  Google Scholar 

  37. Barrows, B.D., Haslam, S.M., Bischof, L.J., Morris, H.R., Dell, A., Aroian, R.V.: Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J. Biol. Chem. 282, 3302–3311 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. Palaima, E., Leymarie, N., Stroud, D., Mizanur, R.M., Hodgkin, J., Gravato-Nobre, M.J., Costello, C.E., Cipollo, J.F.: The Caenorhabditis elegans bus-2 mutant reveals a new class of O-glycans affecting bacterial resistance. J. Biol. Chem. 285, 17662–17672 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (FOR471 and SFB 535, projects A8 and Z1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Geyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geyer, H., Schmidt, M., Müller, M. et al. Mass spectrometric comparison of N-glycan profiles from Caenorhabditis elegans mutant embryos. Glycoconj J 29, 135–145 (2012). https://doi.org/10.1007/s10719-012-9371-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9371-8

Keywords

Navigation