Skip to main content
Log in

The role of N-Glycan modification of TNFR1 in inflammatory microglia activation

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Accumulating evidences demonstrated that microglia activation and the autocrine loop of tumor necrosis factor-α (TNFα) greatly contribute to the pathogenesis of several CNS diseases. TNFα exerts its biological effects by interacting with two different receptors: TNF receptor 1 (TNFR1) and TNFR2. The classic proinflammatory activity of TNFα is mainly mediated by TNFR1. In the present study, we found that TNFR1 was modificated by N-glycosylation on Asn151 and Asn202 in microglia. The N-glycosylation of TNFR1 could facilitate its capability of binding to TNFα and further promote the formation of TNFα autocrine loop in microglia stimulated by TNFα, resulting in excessive microglia activation and CNS inflammation. All these processes were related to TNFR1-mediated NF-κB pathways. Elimination of N-glycosylation did not affect the subcellular transportation and cell surface localization of TNFR1, but suppressed ligand-binding affinity. These findings indicated that the N-glycosylation of TNFR1 played an important role during microglia activation in CNS inflammation. By this study, we aimed to provide some valuable experimental evidence for a better understanding of the significance of protein glycosylation in microglia inflammatory activation and CNS disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fernandes, A., Miller-Fleming, L., Pais, T.F.: Microglia and inflammation: conspiracy, controversy or control? Cell. Mol. Life Sci. 71, 3969–3985 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. Fischer, R., Maier, O.: Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015, 610813 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  3. Cabal-Hierro, L., Lazo, P.S.: Signal transduction by tumor necrosis factor receptors. Cell. Signal. 24, 1297–1305 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Kollias, G.: TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin. Arthrit. Rheum. 34, 3–6 (2005)

    Article  CAS  Google Scholar 

  5. Kuno, R., Wang, J., Kawanokuchi, J., Takeuchi, H., Mizuno, T., Suzumura, A.: Autocrine activation of microglia by tumor necrosis factor-alpha. J. Neuroimmunol. 162, 89–96 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee, D.K.: N-glycans in cell survival and death: cross-talk between glycosyltransferases. Biochim. Biophys. Acta 1820, 1338–1346 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zhang, J., Hawari, F.I., Shamburek, R.D., Adamik, B., Kaler, M., Islam, A., Liao, D.W., Rouhani, F.N., Ingham, M., Levine, S.J.: Circulating TNFR1 exosome-like vesicles partition with the LDL fraction of human plasma. Biochem. Biophys. Res. Commun. 366, 579–584 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kohne, C., Johnson, A., Tom, S., Peers, D.H., Gehant, R.L., Hotaling, T.A., Brousseau, D., Ryll, T., Fox, J.A., Chamow, S.M., Berman, P.W.: Secretion of glycosylation site mutants can be rescued by the signal/pro sequence of tissue plasminogen activator. J. Cell. Biochem. 75, 446–461 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Stadlmann, J., Pabst, M., Kolarich, D., Kunert, R., Altmann, F.: Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8, 2858–2871 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Montgomery, S.L., Bowers, W.J.: Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J. Neuroimmune. Pharmacol. 7, 42–59 (2012)

    Article  PubMed  Google Scholar 

  11. Peschon, J.J., Torrance, D.S., Stocking, K.L., Glaccum, M.B., Otten, C., Willis, C.R., Charrier, K., Morrissey, P.J., Ware, C.B., Mohler, K.M.: TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J. Immunol. 160, 943–952 (1998)

    CAS  PubMed  Google Scholar 

  12. Zhang, L., Connelly, J.J., Peppel, K., Brian, L., Shah, S.H., Nelson, S., Crosslin, D.R., Wang, T., Allen, A., Kraus, W.E., Gregory, S.G., Hauser, E.R., Freedman, N.J.: Aging-related atherosclerosis is exacerbated by arterial expression of tumor necrosis factor receptor-1: evidence from mouse models and human association studies. Hum. Mol. Genet. 19, 2754–2766 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Liu, Z., Swindall, A.F., Kesterson, R.A., Schoeb, T.R., Bullard, D.C., Bellis, S.L.: ST6Gal-I regulates macrophage apoptosis via alpha2-6 sialylation of the TNFR1 death receptor. J. Biol. Chem. 286, 39654–39662 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Badiola, N., Malagelada, C., Llecha, N., Hidalgo, J., Comella, J.X., Sabria, J., Rodriguez-Alvarez, J.: Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen-glucose deprived cultured cortical cells. Neurobiol. Dis. 35, 438–447 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Wajant, H., Scheurich, P.: TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J. 278, 862–876 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Dellarole, A., Morton, P., Brambilla, R., Walters, W., Summers, S., Bernardes, D., Grilli, M., Bethea, J.R.: Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling. Brain Behav. Immun. 41, 65–81 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. Weng, T.Y., Chiu, W.T., Liu, H.S., Cheng, H.C., Shen, M.R., Mount, D.B., Chou, C.Y.: Glycosylation regulates the function and membrane localization of KCC4. Biochim. Biophys. Acta 1833, 1133–1146 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Matsumoto, M., Katsuyama, M., Iwata, K., Ibi, M., Zhang, J., Zhu, K., Nauseef, W.M., Yabe-Nishimura, C.: Characterization of N-glycosylation sites on the extracellular domain of NOX1/NADPH oxidase. Free Radic. Biol. Med. 68, 196–204 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Chan, F.K., Chun, H.J., Zheng, L., Siegel, R.M., Bui, K.L., Lenardo, M.J.: A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, No.2012CB822104); the National Natural Science Foundation of China (No.31500647, No.81371299, No.31440037, No.31270802); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (15KJA310003); the Natural Science Foundation of Jiangsu Province (BK20150408); a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaifu Ke or Aiguo Shen.

Additional information

Lijian Han and Dongmei Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhang, D., Tao, T. et al. The role of N-Glycan modification of TNFR1 in inflammatory microglia activation. Glycoconj J 32, 685–693 (2015). https://doi.org/10.1007/s10719-015-9619-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9619-1

Keywords

Navigation