Skip to main content

Advertisement

Log in

Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Legumes are extremely susceptible to soil salinity because of high sensitivity of nitrogen‐fixing nodules, where root hair infection and nodulation are particularly salt sensitive. Arbuscular mycorrhiza (AM) inoculation is a promising approach to improve rhizobial symbiosis and hence growth. Flavonoids such as naringenin (Nar), play an imperative role in tripartite symbiosis of rhizobia and AM with legumes by signalling both symbioses. Modulation in flavonoids content is one of the important factors limiting nodulation and mycorrhization in salt stressed plants. Green house study investigated the potential of Nar (4 µM) and mycorrhiza (Funneliformis mosseae) in enhancing nodulation and nitrogen fixation in Cicer arietinum L. genotypes (PBG 5, DCP 92-3) under NaCl (0–100 mM). High sodium concentration in the nodules deleteriously affected nodulation, rate of nitrogen fixation, endogenous Nar and nutrient status, with higher negative effects in DCP 92-3 than PBG 5, which could be directly correlated with higher mycorrhizal dependency and lower colonization. Exogenous Nar partly restored nodulation and mycorrhization indicating its involvement as signal molecule in symbiosis. Mycorrhization and Nar enhanced salt induced trehalose 6-P-synthase and phosphatase and reduced trehalase activity, ensuing higher trehalose biosynthesis in nodules. Relative assessment of AM and Nar indicated a more prominent contribution of AM in reducing Na+ uptake and improving phosphorus, with nodulation and trehalose synthesis exhibiting higher dependency on Nar. Complete amelioration of negative effects of salinity were observed with +Nar+AM, thereby suggesting complementation of Nar and AM in improving symbiotic efficiency of chickpea under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  CAS  Google Scholar 

  • Adesanya SA, O’Neill MJ, Rouerts MF (1986) Structure-related fungitoxicity of isoflavonoids. Physiol Mol Plant Pathol 29:95–103

    Article  CAS  Google Scholar 

  • Ali Z, Salam A, Azhar FM, Khan IA (2007) Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. South Afr J Bot 73:70–75

    Article  CAS  Google Scholar 

  • Ali Q, Ashraf M, Anwar F, Al-Qurainy F (2012) Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc 89:1485–1493

    CAS  Google Scholar 

  • Allen SF, Grimshaw HF, Rowl AB (1984) Chemical analysis. In: Moor PD, Chapman SB (eds) Methods in plant ecology. Blackwell, Oxford, pp 185–344

    Google Scholar 

  • Almeida AM, Villalobos E, Araújo SS, Leyman B, Van Dijck P, Alfaro-Cardoso L, Fevereiro PS, Torné JM, Santos DM (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146:165–176

    Article  CAS  Google Scholar 

  • Ampomah OY, Jensen JB, Bhuvaneswari TV (2008) Lack of trehalose catabolism in Sinorhizobium species increases their nodulation competitiveness on certain host genotypes. New Phytol 179(2):495–504

    Article  CAS  PubMed  Google Scholar 

  • Andrés JA, Rovera M, Guiñazú LB, Pastor NA, Rosas SB (2012) Interactions between legumes and rhizobia under stress conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 77–94

    Chapter  Google Scholar 

  • Asghari HR (2008) Vesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedlings. Int J Plant Prod 2(3):243–256

    CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131(3):1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballesteros-Almanza L, Altamirano-Hernandez J, Peña-Cabriales JJ, Santoyo G, Sanchez-Yañez JM, Valencia-Cantero E, Macias-Rodriguez L, López-Bucio J, Cardenas-Navarro R, Farias-Rodriguez R (2010) Effect of co-inoculation with mycorrhiza and rhizobia on the nodule trehalose content of different bean genotypes. Open Microbiol J 4:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001) Inoculation of pea (Pisum sativum L.) by Rhizobium leguminosarum bv. viceae preincubated with naringenin and hesperetin or application of naringenin and hesperetin directly into soil increased pea nodulation under short season conditions. Plant Soil 237:71–80

    Article  CAS  Google Scholar 

  • Bencini DA, Wild JR, O’Donovan GA (1983) Linear one-step assay for the determination of orthophosphate. Anal Biochem 132(2):254–258

    Article  CAS  PubMed  Google Scholar 

  • Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153(4):1808–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai YZ, Sun M, Xing J, Luo Q, Corke H (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci 78(25):2872–2888

    Article  CAS  PubMed  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302(1–2):33–43

    Article  CAS  Google Scholar 

  • Carpenter JF, Prestrelski SJ, Anchordoguy TJ, Arakawa T (1994) Interactions of stabilizers with proteins during freezing and drying. In: Cleland JL, Langer R (eds) Formulation and delivery of proteins and peptides. American Chemical Society, Washington, pp 134–147

    Chapter  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Chapman HD, Pratt PF (1961) Methods of analysis for soil, plant and waters, 1st edn. Division of Agricultural Sciences, University of California, Riverside, pp 150–210

    Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166(6):617–625

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manag. doi:10.1094/CM-2004-0301-09-RV

    Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F, Gresshoff PM (2012) Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. South Afr J Bot 79:9–18

    Article  Google Scholar 

  • Domínguez-Ferreras A, Soto MJ, Pérez-Arnedo R, Olivares J, Sanjuán J (2009) Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J Bacteriol 191(24):7490–7499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckhardt NA (2006) The role of flavonoids in root nodule development and auxin transport in Medicago truncatula. Plant Cell 18:1539–1540

    Article  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graceum. Mycorrhiza 22(3):203–217

    Article  CAS  PubMed  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15(7):409–417

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CLL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33(4):490–509

    Article  CAS  PubMed  Google Scholar 

  • Fokom R, Nana WL, Tchameni S, Nwaga D (2010) Arbuscular mycorrhizal fungi (AMF) colonisation and rhizobia nodulation of cowpea as affected by flavonoid application. Res J Agric Biol Sci 6(6):1015–1021

    CAS  Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 113:19–33

    Article  CAS  PubMed  Google Scholar 

  • Füzy A, Tóth T, Bíró B (2008) Soil-plant factors, others than the type of salt-specific anions are affecting the mycorrhiza colonisation of some halophytes. Community Ecol 9(Suppl):1–8

    Google Scholar 

  • Garg N, Bhandari P (2015) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul. doi:10.1007/s10725-015-0099-x

    Google Scholar 

  • Garg N, Chandel S (2011a) Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (L.) under salt stress. Turk J Agric For 35:205–214

    CAS  Google Scholar 

  • Garg N, Chandel S (2011b) The effects of salinity on nitrogen fixation and trehalose metabolism in mycorrhizal Cajanus cajan (L.) Millsp. plants. J Plant Growth Regul 30(4):490–503

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2015) Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul 75:521–534

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2015) Naringenin- and Funneliformis mosseae-mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. J Plant Growth Regul 34(3):595–610

    Article  CAS  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. PNAS 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geneva M, Zehirov G, Djonova E, Kaloyanova N, Georgiev G, Stancheva I (2006) The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant Soil Environ 52(10):435–440

    CAS  Google Scholar 

  • Ghasem F, Poustini K, Besharati H, Mohammadi VA, Abooei Mehrizi F, Goettfert M (2012) Pre-incubation of Sinorhizobium meliloti with luteolin, methyl jasmonate and genistein affecting alfalfa (Medicago sativa L.) growth, nodulation and nitrogen fixation under salt stress conditions. J Agric Sci Technol 14:1255–1264

    CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Grennan AK (2007) The role of trehalose biosynthesis in plants. Plant Physiol 144(1):3–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover M, SkZ Ali, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Habte M, Osorio NW (2001) Arbuscular mycorrhizas: producing and applying arbuscular mycorrhizal inoculum. Department of Tropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Monoa

  • Hajiboland R, Aliasgharzadeh A, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21(2):117–129

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Du X, Zhao F, Ji H (2010) Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo bilioba. Biotechnol Lett 32(2):305–314

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defensive gene transcripts during the establishment of vesicular–arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact 6(5):643–654

    Article  CAS  Google Scholar 

  • Harrison M, Dixon R (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20

    Article  CAS  Google Scholar 

  • Hartree EF (1957) Haematin compounds. In: Paech K, Tracey MV (eds) Modern methods of plant analysis. Springer, Berlin, pp 197–245

    Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Herdina JA, Silsbury JH (1990) Estimating nitrogenase activity of faba bean (Vicia faba) by acetylene reduction (AR) assay. Aust J Plant Physiol 17(5):489–502

    Article  CAS  Google Scholar 

  • Iordachescu M, Imai R (2011) Trehalose and abiotic stress in biological systems. In: Shanker A (ed) Abiotic stress in plants—mechanisms and adaptations. ISBN: 978-953-307-394-1, InTech. doi:10.5772/22208. http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/trehalose-and-abiotic-stress-in-biological-systems

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Printice Hall, New Delhi, p 485

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of the mycorrhizal lettuce plants. Microb Ecol 55(1):45–53

    Article  PubMed  Google Scholar 

  • Jain V, Garg N, Nainawatee HS (1990) Naringenin enhanced efficiency of Rhizobium meliloti-alfalfa symbiosis. World J Microbiol Biotechnol 6:434–436

    Article  CAS  PubMed  Google Scholar 

  • Jensen JB, Ampomah OY, Darrah R, Peters NK, Bhuvaneswari TV (2005) Role of trehalose transport and utilization in Sinorhizobium meliloti-alfalfa interactions. Mol Plant Microbe Interact 18(7):694–702

    Article  CAS  PubMed  Google Scholar 

  • Junior MAL, Costa C, Smith DL (2003) Effects of addition of flavonoid signals and environmental factors on nodulation and nodule development in the pea (Pisum sativum)–Rhizobium leguminosarum bv. viciae symbiosis. Aust J Soil Res 41(2):267–276

    Article  Google Scholar 

  • Kapulnik Y, Joseph CM, Phillips DA (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol 84(4):1193–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai H, Sakurai M, Inoue Y, Chujo R, Kobayashi S (1992) Hydration of oliosaccharides: anomalous hydration ability of trehalose. Cryobiology 29(5):599–606

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Salih Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 1(1):1–6

    Article  CAS  Google Scholar 

  • Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165(11):1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Kondorosi E, Mergaert P, Kereszt A (2013) A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol 67:611–628

    Article  CAS  PubMed  Google Scholar 

  • Koshal AK (2012) Satellite image analysis of salinity areas through GPS, remote sensing and GIS. In: 14th annual international conference and exhibition on geospatial technology and applications, India Geospatial Forum

  • Kosslak RM, Joshi RS, Bowen BA, Paaren HE, Appelbaum ER (1990) Strain-specific inhibition of nod gene induction in Bradyrhizobium japonicum by flavonoid compounds. Appl Environ Microbiol 56(5):1333–1341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner RC (1944) Rapid analytical method for some of the more in organic constituents of plants tissue. Plant Physiol 19(1):76–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, Vanden-Bosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analysis reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15(9):2106–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LZ, Gong ZQ, Zhang YL, Li PJ (2011) Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere 21(3):319–327

    Article  CAS  Google Scholar 

  • López M, Herrera-Cervera JA, Lluch C, Tejera NA (2006) Trehalose metabolism in root nodules of the model legume Lotus japonicus in response to salt stress. Physiol Plant 128(4):701–709

    Article  CAS  Google Scholar 

  • López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008a) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134(4):575–582

    Article  PubMed  CAS  Google Scholar 

  • López M, Herrera-Cervera JA, Iribrane C, Tejera NA, Lluch C (2008b) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  PubMed  CAS  Google Scholar 

  • López-Gómez M, Tejera NA, Iribarne C, Herrera-Cervera JA, Lluch C (2012) Different strategies for salt tolerance in determined and indeterminate nodules of Lotus japonicus and Medicago truncatula. Arch Agron Soil Sci 58(9):1061–1073

    Article  Google Scholar 

  • Mandal AK, Sharma RC (2005) Computerization database on salt affected soils of Haryana state. J Indian Soc Remote Sens 33(3):447–455

    Article  Google Scholar 

  • Marcel GA, Heijden VD, Bardgett RD, Straalen NMV (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  Google Scholar 

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na and NH4. Short test methods used in Soil Testing Division, Department of Agriculture, Raleigh, North Carolina

  • Mhadhbi H, Fotopoulos V, Djebali N, Polidoros AN, Aouani ME (2009) Behaviours of Medicago truncatulaSinorhizobium meliloti symbioses under osmotic stress in relation with the symbiotic partner input: effects on nodule functioning and protection. J Agron Crop Sci 195(3):225–231

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosulphosalicylic acid (DNSA) reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Muller M (1983) A mayor error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)–Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45(2):146–152

    Article  CAS  Google Scholar 

  • Miransari M, Riahi H, Eftekhar F, Minaie A, Smith DL (2013) Improving soybean (Glycine max L.) N2 fixation under stress. J Plant Growth Regul 32:909–921

    Article  CAS  Google Scholar 

  • Miyasaka SC, Habte M, Friday JB, Johnson EV (2003) Manual on arbuscular mycorrhizal fungus production and inoculation techniques. Honolulu (HI): University of Hawaii (Soil and Crop Management; SCM-5)

  • Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) A review: beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci 1(9):310–319

    Google Scholar 

  • Müller J, Xie ZP, Staehelin C, Mellor RB, Boller T, Wiemken A (1994) Trehalose and trehalase in root nodules from various legumes. Physiol Plant 90(1):86–92

    Article  Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112(1):1–9

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nandwal AS, Kukreja S, Kumar N, Sharma PK, Jain M, Mann A, Singh S (2007) Plant water status, ethylene evolution, N(2)-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. J Plant Physiol 164(9):1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Nelson DW, Sommers LE (1973) Determination of total nitrogen in plant material. Agron J 65(1):109–112

    Article  CAS  Google Scholar 

  • Novák K, Chovanec P, Škrdleta V, Kropáčová M, Lisá L, Němcová M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot 53(375):1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174(4):879–891

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, Agron. No. 9, part 2—chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, pp 403–430

  • Padilla L, Krämer R, Stephanopoulos G, Agosin E (2004) Overproduction of trehalose: heterologous expression of Escherchia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum. Appl Environ Microbiol 70(1):370–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Pereira CS, Lins RD, Chandrasekhar I, Freitas LCG, Hünenberger PH (2004) Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J 86:2273–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martín MS, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166(13):1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Proborini MW, Sudana M, Suarna W, Ristiati NP (2013) Indigenous vesicular arbuscular mycorrhizal (VAM) fungi in cashew nut (Anacardium occidentale L.) plantation of North East-Bali island-Indonesia. J Biol Agric Healthc 3(3):114–121

    Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4(3):210–222

    CAS  Google Scholar 

  • Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 12(207):1–17

    Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Soil and Water Conservation Research Branch, Agricultural Research Service, Agriculture Handbook No. 60, U.S. Government Printing Office, Washington 25, D.C. http://www.ars.usda.gov/sp2UserFiles/Place/20360500/hb60_pdf/hb60complete.pdf

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Rychter AM, Chauveau M, Bomsel JL, Lance C (1992) The effect of phosphorus deficiency on mitochondrial activity and adenylate levels in bean roots. Physiol Plant 84:80–86

    Article  CAS  Google Scholar 

  • Sa TM, Israel DW (1991) Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiol 97:928–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen SO, Streeter JG (1986) Enzymes of alpha, alpha-trehalose metabolism in soybean nodules. Plant Physiol 81(2):538–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J Plant Interact 1(1):15–22

    Article  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Monica ID, Vierheilig H, Ocampo JA, Godeas A (2009) Development of arbuscular mycorrhizal fungi in the presence of different patterns of Trifolium repens shoot flavonoids. J Soil Sci Plant Nutr 9(2):102–115

    Google Scholar 

  • Serraj R, Roy G, Drevon JJ (1994) Salt stress induces a decrease in the oxygen uptake of soybean nodules and their permeability to oxygen diffusion. Physiol Plant 91(2):161–168

    Article  CAS  Google Scholar 

  • Sharma PK, Upadhyay KK, Kamboj DV, Kukreja K (2002) Preincubation of Mesorhizobium ciceri with flavonoids improves its nodule occupancy. Folia Microbiol 47(5):541–544

    Article  CAS  Google Scholar 

  • Shaw LJ, Hooker JE (2008) The fate and toxicity of the flavonoids naringenin and formononetin in soil. Soil Biol Biochem 40(2):528–536

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    Article  CAS  PubMed  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118(1):87–93

    Article  CAS  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Soares ACF, Martins MA, Mathias L, Freitas MSM (2005) Arbuscular mycorrhizal fungi and the occurrence of flavonoids in roots of passion fruit seedlings. Sci Agric 62(4):331–336

    Article  CAS  Google Scholar 

  • Sohrabi Y, Heidari G, Esmailpoor B (2008) Effect of salinity on growth and yield of desi and kabuli chickpea cultivars. Pak J Biol Sci 11(4):664–667

    Article  PubMed  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12(7):1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Streeter JG, Salminen SO (1988) Carbon metabolism and the exchange of metabolites between symbionts in legume nodules. In: O’Gara F, Manian S, Drevon JJ (eds) Physiological limitations and the genetic improvement of symbiotic nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 11–20

    Chapter  Google Scholar 

  • Streeter JG, Strimbu CE (1998) Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas–liquid chromatography. Anal Biochem 259(2):253–257

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21(7):958–966

    Article  PubMed  CAS  Google Scholar 

  • Sugawara M, Cytryn EJ, Sadowsky MJ (2010) Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl Environ Microbiol 76(4):1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Tahat MM, Sijam K (2012) Mycorrhizal fungi and abiotic environmental conditions relationship. Res J Environ Sci 6(4):125–133

    Article  CAS  Google Scholar 

  • Tang LC, Hinsinger P, Drevon JJ, Jaillard B (2001) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula. Ann Bot 88:131–138

    Article  CAS  Google Scholar 

  • Tavasolee A, Aliasgharzad N, SalehiJouzani G, Mardi M, Asgharzadeh A (2011) Interactive effects of Arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. Afr J Biotechnol 10(39):7585–7591

    Google Scholar 

  • Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E, Cesco S (2008) Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem 40(7):1971–1974

    Article  CAS  Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57(5):1485–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239

    Article  Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361

    Article  CAS  Google Scholar 

  • Upadhyay KK, Kamboj DV, Sharma PK (1997) Host specificity of nodulation in Rhizobium sp. (Cicer) as revealed by Tsr bioassay. Folia Microbiol 42(4):381–384

    Article  CAS  Google Scholar 

  • Vessey JK (1994) Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay. Plant Soil 158:151–162

    Article  CAS  Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piché Y (1998) Flavonoids and arbuscular mycorrhizal fungi. In: Manthey J, Buslig B (eds) Flavonoids in the living system. Plenum Press, New York, pp 9–33

    Chapter  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils: effects of variations in digestion conditions and of organic soil constituents. Soil Sci 63(4):251–264

    Article  CAS  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18(7):1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32(2):297–304

    Article  CAS  Google Scholar 

  • Xie Z-P, Müller J, Wiemken A, Broughton WJ, Boller T (1997) Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus. New Phytol 139:361–366

    Article  Google Scholar 

  • Yaseen T, Burni T, Hussain F (2012) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of chickpea (Cicer arietinum) varieties. Int J Agron Plant Prod 3(9):334–345

    Google Scholar 

  • Zacarías JJJ, Altamirano-Hernández J, Cabriales JJP (2004) Nitrogenase activity and trehalose content of nodules of drought-stressed common beans infected with effective (Fix+) and ineffective (Fix) rhizobia. Soil Biol Biochem 36(12):1975–1981

    Article  CAS  Google Scholar 

  • Zhuang X, Gao J, Ma A, Fu S, Zhuang G (2013) Bioactive molecules in soil ecosystems: masters of the underground. Int J Mol Sci 14:8841–8868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the INSPIRE Program, Department of Science and Technology (DST) and Department of Biotechnology, Ministry of Science and Technology, Government of India for providing financial support in undertaking the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, N., Singla, P. Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul 80, 5–22 (2016). https://doi.org/10.1007/s10725-016-0146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0146-2

Keywords

Navigation