Skip to main content
Log in

Expression patterns of imprinted gene Inpp5f-v3 during mouse brain development

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Inpp5f-v3 is a transcriptional variant of Inpp5f (inositol polyphosphate-5-phosphatase F) and locates in distal mouse chromosome 7. It is a paternally expressed imprinted gene in mouse. In this study, we examined the spatiotemporal patterns of Inpp5f-v3 gene during the mouse development. The northern blotting analysis revealed that only one transcript approx 2.7 kb of Inpp5f-v3 was detected in brain. The signals were only observed in brain by the whole-mount in situ hybridization at embryonic day 11.5 (E11.5). The results of quantitative real-time PCR (QRT-PCR) showed that the expression of Inpp5f-v3 increased gradually from the E11.5 to E17.5 and reached the highest at E17.5, then decreased at E18.5 during the brain development. Inpp5f-v3 gene was strongly expressed in the cerebral cortex, olfactory bulb, external germinal layer of cerebellum and ventricular zone (Vz) during the embryonic development (E15.5–E19.5), whereas the expression increased in the olfactory bulb and the cerebellum after birth by using in situ hybridization. The results also demonstrated that the expression of Inpp5f-v3 gene mainly located in olfactory bulb and hippocampus at postnatal day 7 (P7) and adulthood. These results suggest that Inpp5f-v3 is specifically expressed in mouse brain, and may function in the development of mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arai Y, Ijuin T, Itoh M, Takenawa T, Takashima S, Becker LE (2001) Developmental changes of synaptojanin expression in the human cerebrum and cerebellum. Brain Res Dev Brain Res 129(1):1–9. doi:S0165380601001407

    Article  PubMed  CAS  Google Scholar 

  • Barlow DP (1995) Gametic imprinting in mammals. Science 270(5242):1610–1613

    Article  PubMed  CAS  Google Scholar 

  • Choi JD, Underkoffler LA, Wood AJ, Collins JN, Williams PT, Golden JA, Schuster EF Jr, Loomes KM, Oakey RJ (2005) A novel variant of Inpp5f is imprinted in brain, and its expression is correlated with differential methylation of an internal CpG island. Mol Cell Biol 25(13):5514–5522. doi:10.1128/MCB.25.13.5514-5522.2005

    Article  PubMed  CAS  Google Scholar 

  • Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99(2):179–188. doi:S0092-8674(00)81649-9

    Article  PubMed  CAS  Google Scholar 

  • Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115(3):527–537. doi:10.1172/JCI24178

    PubMed  CAS  Google Scholar 

  • Fishell G, Hatten ME (1991) Astrotactin provides a receptor system for CNS neuronal migration. Development 113(3):755–765

    PubMed  CAS  Google Scholar 

  • Fowden AL, Sibley C, Reik W, Constancia M (2006) Imprinted genes, placental development and fetal growth. Horm Res 65(Suppl 3):50–58. doi:10.1159/000091506

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21(9):375–382. doi:S0166-2236(98)01313-7

    Google Scholar 

  • Guillemot F, Caspary T, Tilghman SM, Copeland NG, Gilbert DJ, Jenkins NA, Anderson DJ, Joyner AL, Rossant J, Nagy A (1995) Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet 9(3):235–242. doi:10.1038/ng0395-235

    Article  PubMed  CAS  Google Scholar 

  • Hughes WE, Cooke FT, Parker PJ (2000) Sac phosphatase domain proteins. Biochem J 350(Pt 2):337–352

    Google Scholar 

  • Komuro H, Rakic P (1998) Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci 18(4):1478–1490

    PubMed  CAS  Google Scholar 

  • Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001) Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem 276(25):22011–22015. doi:10.1074/jbc.M101579200M101579200

    Article  PubMed  CAS  Google Scholar 

  • Moorman AF, Houweling AC, de Boer PA, Christoffels VM (2001) Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J Histochem Cytochem 49(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Ooms LM, Horan KA, Rahman P, Seaton G, Gurung R, Kethesparan DS, Mitchell CA (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419(1):29–49. doi:10.1042/BJ20081673

    Article  PubMed  CAS  Google Scholar 

  • Piette D, Hendrickx M, Willems E, Kemp CR, Leyns L (2008) An optimized procedure for whole-mount in situ hybridization on mouse embryos and embryoid bodies. Nat Protoc 3(7):1194–1201. doi:10.1038/nprot.2008.103

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32. doi:10.1038/35047554

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Govek EE, Tomoda T, Hatten ME (2006) Neuronal polarity in CNS development. Genes Dev 20(19):2639–2647. doi:10.1101/gad.1462506

    Article  PubMed  CAS  Google Scholar 

  • Sritanaudomchai H, Ma H, Clepper L, Gokhale S, Bogan R, Hennebold J, Wolf D, Mitalipov S (2010) Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 25(8):1927–1941. doi:10.1093/humrep/deq144

    Article  PubMed  CAS  Google Scholar 

  • Wan YS, Wang ZQ, Shao Y, Voorhees JJ, Fisher GJ (2001) Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int J Oncol 18(3):461–466

    PubMed  CAS  Google Scholar 

  • Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2(7):484–491. doi:10.1038/3508155835081558

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Nieto MA (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225:361–373

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Bourc’his D, Bestor TH, Oakey RJ (2007) Allele-specific demethylation at an imprinted mammalian promoter. Nucleic Acids Res 35(20):7031–7039. doi:10.1093/nar/gkm742

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY, Huang JN, Zhu MJ, Zhao SH (2009) Molecular characterization and association analysis with production traits of the porcine INPP5F gene. Mol Biol Rep 36(5):1095–1098. doi:10.1007/s11033-008-9283-7

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM, Epstein JA (2009) Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res 105(12):1240–1247. doi:10.1161/CIRCRESAHA.109.208785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported from the National Natural Science Foundation of China (No. 30971645) and Heilongjiang Province Technological Project Program Returning Foundation (No. LC08C05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Qiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, C., Hongjuan, H., Yanjiang, X. et al. Expression patterns of imprinted gene Inpp5f-v3 during mouse brain development. J Mol Hist 42, 167–173 (2011). https://doi.org/10.1007/s10735-011-9321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-011-9321-y

Keywords

Navigation