Skip to main content
Log in

Pulse perturbations from bacterial decomposition of Chrysaora quinquecirrha (Scyphozoa: Pelagiidae)

  • JELLYFISH BLOOMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bacteria decomposed damaged and moribund Chrysaora quinquecirrha Desor, 1848 releasing a pulse of carbon and nutrients. Tissue decomposed in 5–8 days, with 14 g of wet biomass exhibiting a half-life of 3 days at 22°C, which is 3× longer than previous reports. Decomposition raised mean concentrations of organic carbon and nutrients above controls by 1–2 orders of magnitude. An increase in nitrogen (16,117 μg l−1) occurred 24 h after increases in phosphorus (1,365 μg l−1) and organic carbon (25 mg l−1). Cocci dominated control incubations, with no significant increase in numbers. In incubations of tissue, bacilli increased exponentially after 6 h to become dominant, and cocci reproduced at a rate that was 30% slower. These results, and those from previous studies, suggested that natural assemblages may include bacteria that decompose medusae, as well as bacteria that benefit from the subsequent release of carbon and nutrients. This experiment also indicated that proteins and other nitrogenous compounds are less labile in damaged medusae than in dead or homogenized individuals. Overall, dense patches of decomposing medusae represent an important, but poorly documented, component of the trophic shunt that diverts carbon and nutrients incorporated by gelatinous zooplankton into microbial trophic webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arai, M. N., 1997. A functional biology of Scyphozoa. Chapman and Hall, London: 316 pp.

    Google Scholar 

  • Arai, M. N., J. A. Ford & J. N. C. Whyte, 1989. Biochemical composition of fed and starved Aequorea victoria (Murbach et Shearer, 1902) (Hydromedusa). Journal of Experimental Marine Biology and Ecology 127: 289–299.

    Article  CAS  Google Scholar 

  • Bachmann, R. W. & D. E. Canfield Jr., 1996. Use of an alternative method for monitoring total nitrogen concentrations in Florida lakes. Hydrobiologia 323: 1–8.

    Article  CAS  Google Scholar 

  • Bidle, K. D., M. Manganelli & F. Azam, 2002. Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298: 1980–1984.

    Article  PubMed  CAS  Google Scholar 

  • Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.

    Article  Google Scholar 

  • Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–68.

    Article  Google Scholar 

  • Condon, R. H., D. K. Steinberg & D. A. Bronk, 2010. Production of dissolved organic matter and inorganic nutrients by gelatinous zooplankton in the York River estuary, Chesapeake Bay. Journal of Plankton Research 32: 153–170.

    Article  CAS  Google Scholar 

  • Condon, R. H., D. K. Steinberg, P. A. del Giorgio, T. C. Bouvier, D. A. Bronk, W. M. Graham & H. W. Ducklow, 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proceedings of the National Academy of Sciences 108: 10225–10230.

    Article  CAS  Google Scholar 

  • Doores, S. & T. M. Cook, 1976. Occurrence of Vibrio and other bacteria on the sea nettle, Chrysaora quinquecirrha. Microbial Ecology 3: 31–40.

    Article  Google Scholar 

  • Doyle, T. K., J. D. R. Houghton, R. McDevitt, J. Davenport & G. C. Hays, 2007. The energy density of jellyfish: estimates from bomb-calorimetry and proximate-composition. Journal of Experimental Marine Biology and Ecology 242: 239–252.

    Article  Google Scholar 

  • Glasby, T. M. & A. J. Underwood, 1996. Sampling to differentiate between pulse and press perturbations. Environmental Monitoring and Assessment 42: 241–252.

    Article  Google Scholar 

  • Graham, W. M., 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451: 97–111.

    Article  Google Scholar 

  • Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212.

    Article  Google Scholar 

  • Hamner, W. M. & M. N. Dawson, 2009. A review and synthesis on the systematic and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616: 161–191.

    Article  Google Scholar 

  • Hansson, L. J. & B. Norrman, 1995. Release of dissolved organic carbon (DOC) by the scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktonic bacteria. Marine Biology 121: 527–532.

    Article  CAS  Google Scholar 

  • Heeger, T., U. Piatkowski & H. Möller, 1992. Predation on jellyfish by the cephalopod Argonauta argo. Marine Ecology Progress Series 88: 293–296.

    Article  Google Scholar 

  • Koppelmann, R. & J. Frost, 2008. The ecological role of zooplankton in the twilight and dark zones of the ocean. In Mertens, L. P. (ed.), Biological Oceanography Research Trends. Nova Science Publishers, Inc., New York: 67–130.

    Google Scholar 

  • Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.

    Article  Google Scholar 

  • Lebrato, M. & D. O. B. Jones, 2009. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnology and Oceanography 54: 1197–1209.

    Article  CAS  Google Scholar 

  • Lucas, C. H., 1994. Biochemical composition of Aurelia aurita in relation to age and sexual maturity. Journal of Experimental Marine Biology and Ecology 183: 179–192.

    Article  CAS  Google Scholar 

  • Lucas, C. H., 2009. Biochemical composition of the mesopelagic coronate jellyfish Periphylla periphylla from the Gulf of Mexico. Journal of the Marine Biological Association of the United Kingdom 89: 77–81.

    Article  CAS  Google Scholar 

  • Malej, A., 1989. Respiration and excretion rates of Pelagia noctiluca (Semaeostomeae, Scyphozoa). In Polish Academy of Sciences (eds), Proceedings of the 21st EMBS. Institute of Oceanology, Gdansk: 107–113.

  • Malej, A., 1991. Rates of metabolism of jellyfish as related to body weight, chemical composition and temperature. In Proceedings of the II Workshop on Jellyfish in the Mediterranean Sea. UNEP, Athens: 253–259.

  • Malej, A., V. Turk, D. Lučić & A. Benović, 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology 151: 827–841.

    Article  Google Scholar 

  • Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnology and Oceanography 10: 280–282.

    Article  Google Scholar 

  • Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science 52: 575–581.

    Article  Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.

    Article  Google Scholar 

  • Mimura, H. & S. Nagata, 2001. Degradation of water-soluble fraction of jellyfish by a marine bacterium, Brevibacterium sp. JCM 6894. Microbes and Environments 16: 121–123.

    Article  Google Scholar 

  • Miyake, H., D. J. Lindsay, J. C. Hunt & T. Hamatsu, 2002. Scyphomedusa Aurelia limbata (Brandt, 1838) found in deep waters off Kushiro, Hokkaido, Northern Japan. Plankton Biology and Ecology 49: 44–46.

    Google Scholar 

  • Miyake, H., D. J. Lindsay, M. Kitamura & S. Nishida, 2005. Occurrence of the scyphomedusa Parumbrosa polylobata Kishinouye, 1910 in Suruga Bay, Japan. Plankton Biology and Ecology 52: 58–66.

    Google Scholar 

  • Morand, P., C. Carré & D. C. Biggs, 1987. Feeding and metabolism of the jellyfish Pelagia noctiluca (scyphomedusae, semaeostomeae). Journal of Plankton Research 9: 651–665.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Murty, S. J., B. J. Bett & A. J. Gooday, 2009. Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea. Deep-Sea Research II 56: 472–487.

    Article  Google Scholar 

  • Nemazie, D. A., J. E. Purcell & P. M. Gilbert, 1993. Ammonium excretion by gelatinous zooplankton and their contribution to the ammonium requirements of microplankton in Chesapeake Bay. Marine Biology 116: 451–458.

    Article  CAS  Google Scholar 

  • Pitt, K. A., K. Koop & D. Rissik, 2005. Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). Journal of Experimental Marine Biology and Ecology 315: 71–86.

    Article  CAS  Google Scholar 

  • Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616: 133–149.

    Article  CAS  Google Scholar 

  • Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates, and effects on prey populations. Annales de l’Institut Oceanographique, Paris 73: 125–137.

    Google Scholar 

  • Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.

    Article  Google Scholar 

  • Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44.

    Article  Google Scholar 

  • Purcell, J. E. & M. B. Decker, 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnology and Oceanography 50: 376–387.

    Article  Google Scholar 

  • Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution 24: 312–322.

    Article  PubMed  Google Scholar 

  • Riemann, L., J. Titelman & U. Båmstedt, 2006. Links between jellyfish and microbes in a jellyfish dominated fjord. Marine Ecology Progress Series 325: 29–42.

    Article  CAS  Google Scholar 

  • Schneider, G., 1988. Chemische zusammensetzung und biomasseparameter der ohrenqualle Aurelia aurita. Helgoländer Meeresuntersuchungen 42: 319–327.

    Article  Google Scholar 

  • Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, Western Baltic. Marine Biology 100: 507–514.

    Article  Google Scholar 

  • Sexton, M. A., R. R. Hood, J. Sarkodee-adoo & A. M. Liss, 2010. Response of Chrysaora quinquecirrha medusae to low temperature. Hydrobiologia 645: 125–133.

    Article  CAS  Google Scholar 

  • Shimauchi, H. & S. Uye, 2007. Excretion and respiration rates of the scyphomedusa Aurelia aurita from the Inland Sea of Japan. Journal of Oceanography 63: 27–34.

    Article  Google Scholar 

  • Tinta, T., A. Malej, M. Kos & V. Turk, 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. Hydrobiologia 645: 179–191.

    Article  CAS  Google Scholar 

  • Titelman, J., L. Riemann, T. A. Sørnes, T. Nilsen, P. Griekspoor & U. Båmstedt, 2006. Turnover of dead jellyfish: stimulation and retardation of microbial activity. Marine Ecology Progress Series 325: 43–58.

    Article  CAS  Google Scholar 

  • West, E. J., D. T. Welsh & K. A. Pitt, 2009. Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia 616: 151–160.

    Article  CAS  Google Scholar 

  • Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamotoa, T. Shimura, N. Honda, Y. Fujimori & T. Mukai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks go to E. Phlips for providing access to his laboratory and microscope for bacterial counts. Further appreciation goes to C. Brown and personnel in the water chemistry laboratory of the Fisheries and Aquatic Sciences Program for analyzing nutrient concentrations. J. Jin at the Department of Geological Sciences analyzed carbon concentrations. S. Barry, M. Edwards, A. Krzystan, J. Lockwood, and D. Saindon provided valuable support during this study, and the comments of three anonymous reviewers led to significant improvements in the manuscript. This article is a contribution to EUR-OCEANS Network of Excellence (WP4-SYSMS-1101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica R. Frost.

Additional information

Guest editors: J. E. Purcell, H. Mianzan & J. R. Frost / Jellyfish Blooms: Interactions with Humans and Fisheries

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, J.R., Jacoby, C.A., Frazer, T.K. et al. Pulse perturbations from bacterial decomposition of Chrysaora quinquecirrha (Scyphozoa: Pelagiidae). Hydrobiologia 690, 247–256 (2012). https://doi.org/10.1007/s10750-012-1042-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1042-z

Keywords

Navigation