Skip to main content
Log in

The influence of light, stream gradient, and iron on Didymosphenia geminata bloom development in the Black Hills, South Dakota

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aquatic nuisance species Didymosphenia geminata was first documented in Rapid Creek of South Dakota’s Black Hills during 2002. Since then, blooms have occurred primarily in a 39-km section of Rapid Creek while blooms were rarely observed in other Black Hills streams. In this study, we evaluated factors related to the presence and development of visible colonies of D. geminata in four streams of the Black Hills. At the watershed scale, stream gradient was negatively associated with the occurrence of D. geminata whereas stream width was positively related to D. geminata presence. At the stream scale, D. geminata coverage was inversely related to canopy coverage and iron concentration. At the local scale, shading by bridges virtually eliminated growth of D. geminata colonies under bridges. At all three scales, proxy measures of light such as stream width, canopy coverage, and bridge shading revealed that light availability was an important factor influencing the presence and coverage of D. geminata colonies. In general, streams that had relatively wide stream reaches (mean = 9.9 m), shallow gradients (mean = 0.22%), and little canopy cover (mean = 13%) were associated with D. geminata blooms. In addition, iron concentrations in streams with D. geminata colonies were lower than in streams without blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA, 2002. Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, United Book Press, Baltimore.

  • Blanco, S. & L. Ector, 2009. Distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwigia 88: 347–422.

    Article  Google Scholar 

  • Bothwell, M. L. & C. Kilroy, 2011. Phosphorous limitation of the freshwater benthic diatom Didymosphenia geminata determined by the frequency of dividing cells. Freshwater Biology 56: 565–578.

    Article  CAS  Google Scholar 

  • Bothwell, M. L., D. Sherbot, A. C. Roberge & R. J. Daley, 1993. Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: short-term versus long-term effects. Journal of Phycology 29: 24–35.

    Article  Google Scholar 

  • Bothwell, M. L., C. Kilroy, B. W. Taylor, E. T. Ellison, D. A. James, C. A. Gillis, K. D. Bladon & U. Silins, 2012. Iron is not responsible for Didymosphenia geminata bloom formation in phosphorus-poor rivers. Canadian Journal of Fisheries and Aquatic Sciences 69: 1723–1727.

    Article  CAS  Google Scholar 

  • Caldwell, M. M., R. Robberecht & W. D. Billings, 1980. A steep latitudinal gradient of solar ultraviolet-B radiation in the arctic-alpine life zone. Ecology 61: 600–611.

    Article  Google Scholar 

  • Cody, R. P. & J. K. Smith, 2006. Applied Statistics and the SAS Programming Language, 5th edn. Pearson Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Cullis, J. D. S., C. Gillis, M. L. Bothwell, C. Kilroy, A. Packman & M. Hassan, 2012. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams. Journal of Geophysical Research 117: G00N03.

  • Domozych, D. S., M. Toso & A. Snyder, 2010. Biofilm dynamics of the nuisance diatom, Didymosphenia geminata (Bacillariophyceae). Nova Hedwigia, Beiheft 136: 249–259.

    Google Scholar 

  • Ellwood, N. T. W. & B. A. Whitton, 2007. Importance of organic phosphate hydrolyzed in stalks of the lotic diatom Didymosphenia geminata and the possible impact of atmospheric and climatic changes. Hydrobiologia 592: 121–133.

    Article  CAS  Google Scholar 

  • Fausch, K. D. & R. J. White, 1981. Competition between brook trout and brown trout for positions in a Michigan stream. Canadian Journal of Fisheries and Aquatic Sciences 38: 1220–1227.

    Article  Google Scholar 

  • Gillis, C. & M. Chalifour, 2009. Changes in the macrobenthic community structure following the introduction of the invasive algae Didymosphenia geminata in the Matapedia River (Quebec, Canada). Hydrobiologia 647: 63–70.

    Article  Google Scholar 

  • Gorman, O. T. & J. R. Karr, 1978. Habitat structure and stream fish communities. Ecology 59: 507–515.

    Article  Google Scholar 

  • Gray, B. R. & W. R. Hill, 1995. Nickel sorption by periphyton exposed to different light intensities. Journal of the North American Benthological Society 14: 299–305.

    Article  Google Scholar 

  • Gretz, M. R., 2008. The stalks of Didymo. In Bothwell, M. L. & S. A. Spaulding (eds), Proceedings of the 2007 International Workshop on Didymosphenia geminata, Vol. 2795. Canadian Technical Report of Fisheries and Aquatic Sciences, Montreal, QC, 21 pp.

  • Herman, J., 2010. Global increases in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. Journal of Geophysical Research 115: D00L15.

  • Hill, W. R., 1996. Effects of light. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 121–148.

    Chapter  Google Scholar 

  • Hill, W. R., A. T. Bednarek & I. L. Larsen, 2000. Cadmium sorption and toxicity in autotrophic biofilms. Canadian Journal of Fisheries and Aquatic Sciences 57: 530–537.

    Article  CAS  Google Scholar 

  • Hosmer Jr., D. W. & S. Lemeshow, 1989. Applied Logistic Regression. Wiley, New York.

    Google Scholar 

  • James, D. A., S. H. Ranney, S. R. Chipps & B. D. Spindler, 2010. Invertebrate composition and abundance associated with Didymosphenia geminata in a montane stream. Journal of Freshwater Ecology 25: 235–241.

    Article  Google Scholar 

  • Kawecka, B. & J. Sanecki, 2003. Didymosphenia geminata in running waters of southern Poland – symptoms of change in water quality? Hydrobiologia 495: 193–201.

    Article  Google Scholar 

  • Kilroy, C., B. Biggs, N. Blair, P. Lambert, B. Jarvie, K. Dey, K. Robinson & D. Smale, 2005. Ecological Studies of Didymosphenia geminata. National Institute of Water and Atmospheric Research, Client Report CHC2005–123, Christchurch.

  • Kilroy, C. & M. Bothwell, 2011. Environmental control of stalk length in the bloom-forming, freshwater benthic diatom Didymosphenia geminata (Bacillariophyceae). Journal of Phycology 47: 981–989.

    Article  Google Scholar 

  • Kilroy, C. & M. Bothwell, 2012. Didymosphenia geminata growth rates and bloom formation in relation to ambient dissolved phosphorus concentration. Freshwater Biology 57: 641–653.

    Article  CAS  Google Scholar 

  • Kilroy, C., S. T. Larned & B. J. F. Biggs, 2009. The non-indigenous diatom Didymosphenia geminata alters benthic communities in New Zealand rivers. Freshwater Biology 54: 1990–2002.

    Article  Google Scholar 

  • Kirkwood, A. E., T. Shea, L. J. Jackson & E. McCauley, 2007. Didymosphenia geminata in two Alberta headwater rivers: an emerging invasive species that challenges conventional views on algal bloom development. Canadian Journal of Fisheries and Aquatic Sciences 64: 1703–1709.

    Article  CAS  Google Scholar 

  • Kirkwood, A. E., L. J. Jackson & E. McCauley, 2009. Are dams hotspots for Didymosphenia geminata blooms? Freshwater Biology 54: 1856–1863.

    Article  CAS  Google Scholar 

  • Kumar, S., S. A. Spaulding, T. J. Stohlgren, K. A. Hermann, T. S. Schmidt & L. L. Bahls, 2009. Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and the Environment 7: 415–420.

    Article  Google Scholar 

  • Kutner, M. H., C. J. Nachtsheim & J. Neter, 2004. Applied Linear Regression Models, 4th edn. McGraw-Hill Irwin, New York.

  • Lawrence, J. R., G. D. W. Swerhone & K. T. Kwong, 1998. Natural attenuation of aqueous metal contamination by an algal mat. Canadian Journal of Microbiology 44: 825–832.

    Article  CAS  Google Scholar 

  • Lemmon, P. E., 1956. A spherical densiometer for estimating forest overstory density. Forestry Science 2: 314–320.

    Google Scholar 

  • Lemmon, P. E., 1957. A new instrument for measuring forest overstory density. Journal of Forestry 55: 667–668.

    Google Scholar 

  • Letovsky, E., K. V. Heal, L. Carvalho & B. M. Spears, 2012. Intracellular versus extracellular iron accumulation in freshwater periphytic mats across a mine water treatment lagoon. Water, Air, and Soil Pollution 223: 1519–1530.

    Article  CAS  Google Scholar 

  • Li, H. W., G. A. Lambert, T. N. Pearsons, C. K. Tait, J. L. Li & J. C. Buckhouse, 1994. Cumulative effects of riparian disturbances along high desert trout streams of the John Day basin, Oregon. Transactions of the American Fisheries Society 123: 627–640.

    Article  Google Scholar 

  • Miller, M. P., D. M. McKnight, J. D. Cullis, A. Greene, K. Vietti & D. Liptzin, 2009. Factors controlling streambed coverage of Didymosphenia geminata in two regulated streams in the Colorado front range. Hydrobiologia 630: 207–218.

    Article  CAS  Google Scholar 

  • Rader, R. B. & T. A. Belish, 1997. Effects of ambient and enhanced UV-B radiation on periphyton in a mountain stream. Journal of Freshwater Ecology 12: 615–628.

    Article  Google Scholar 

  • Rich C. F., Jr., T. E. McMahon, B. E. Rieman & W. L. Thompson, 2003. Local habitat, watershed, and biotic features associated with bull trout occurrence in Montana streams. Transactions of the American Fisheries Society 132: 1053–1064.

    Article  Google Scholar 

  • Rost, A. L., C. H. Fritsen & C. J. Davis, 2011. Distribution of freshwater diatom Didymosphenia geminata in streams in the Sierra Nevada, USA, in relation to water chemistry and bedrock geology. Hydrobiologia 665: 157–167.

    Article  CAS  Google Scholar 

  • Segura, P., 2011. A slimy invader blooms in the rivers of Patagonia. Science 331: 18.

    Article  PubMed  CAS  Google Scholar 

  • Sherbot, D. M. J. & M. L. Bothwell, 1993. A review of the ecology of D. geminata and the physiochemical data of endemic catchments on Vancouver Island. Environmental Sciences Division, National Hydrology Research Institute Contribution 93005: 1–55.

    Google Scholar 

  • Smith, D. J. & G. J. Underwood, 2000. The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. Journal of Phycology 36: 321–333.

    Article  CAS  Google Scholar 

  • Spaulding, S. A. & L. Elwell, 2007. Increase in Nuisance Blooms and Geographic Expansion of the Freshwater Diatom Didymosphenia geminata: Recommendations for Response. U.S. Environmental Protection Agency, Denver, Colorado, and Federation of Flyfishers, Livingston.

  • Staats, N., L. J. Stal, B. de Winder & L. R. Mur, 2000. Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Marine Ecology Progress Series 193: 261–269.

    Article  CAS  Google Scholar 

  • Towns, D. R., 1981. Effects of artificial shading on periphyton and invertebrates in a New Zealand stream. New Zealand Journal of Marine and Freshwater Research 15: 185–192.

    Article  Google Scholar 

  • United States Geological Survey (USGS), 2008. Water Resource and Stream Flow Data 1943–2007. United State Geological Survey. Available on http://www.usgs.gov/. (January 2008).

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd edn. Springer-Verlag, New York.

    Book  Google Scholar 

  • Whitton, B. A., N. T. W. Ellwood & B. Kawecka, 2009. Biology of the freshwater diatom Didymosphenia geminata: a review. Hydrobiologia 630: 1–37.

    Article  CAS  Google Scholar 

  • Zoellick, B. W., 2004. Density and biomass of redband trout relative to stream shading and temperature in southwestern Idaho. Western North American Naturalist 64: 18–26.

    Google Scholar 

Download references

Acknowledgments

We thank personnel from the South Dakota Department of Game, Fish and Parks, and South Dakota State University for laboratory and field assistance during this study. J. Stafford provided assistance with statistical analyses. Funding for this project was provided by Federal Aid in Sport Fish Restoration (Project F-15-R 1514) administered by the South Dakota Department of Game, Fish and Parks. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Fish and Wildlife Service or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. James.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, D.A., Mosel, K. & Chipps, S.R. The influence of light, stream gradient, and iron on Didymosphenia geminata bloom development in the Black Hills, South Dakota. Hydrobiologia 721, 117–127 (2014). https://doi.org/10.1007/s10750-013-1654-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1654-y

Keywords

Navigation