Skip to main content

Advertisement

Log in

A call for standardised snail ecological studies to support schistosomiasis risk assessment and snail control efforts

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater snails act as intermediate hosts (IH) for schistosomiasis, a tropical disease affecting over 200 million people worldwide. Despite their medical importance, an extensive understanding of IH snail ecology remains absent. Especially data on the tolerance limits to different abiotic factors are fragmented and incomplete. Consequently, the construction of accurate species distribution models to identify snail habitats and guide targeted snail control efforts remains difficult. Here, we compiled a summary on the tolerance limits to abiotic factors of African IH snails of human schistosomiasis. A systematic search on Web of Science, PubMed, and Embase identified 45 relevant studies. Synthesis of these studies indicates that research efforts differ greatly between IH snail species, life stages, and abiotic factors. The importance of each abiotic factor in determining snail presence and abundance is discussed. Furthermore, attention was drawn to knowledge gaps and the lack of standardised experimental designs, which impedes comparisons between studies. This in turn prevents us from making firm conclusions and calls for best practices adopted by all malacologists. In doing so, IH snail ecological data could serve as a basis to assess schistosomiasis risk and guide snail control efforts in order to support schistosomiasis control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available in the Supplementary Tables.

References

  • Abdel-Kader, A., B. Mostafa & A. Tantawy, 2005. A field study on water characteristics and their effects on the vector snails of Schistosomiasis and Fascioliasis in Egypt. Journal of the Egyptian German Society of Zoologie 48: 203–216.

    Google Scholar 

  • Adekiya, T. A., R. T. Aruleba, B. E. Oyinloye, K. O. Okosun & A. P. Kappo, 2020. The effect of climate change and the snail-schistosome cycle in transmission and bio-control of schistosomiasis in Sub-Saharan Africa. International Journal of Environmental Research and Public Health 17: 1–22.

    Google Scholar 

  • Adema, C. M., C. J. Bayne, J. M. Bridger, M. Knight, E. S. Loker, T. P. Yoshino & S. M. Zhang, 2012. Will all scientists working on snails and the diseases they transmit please stand up? PLoS Neglected Tropical Diseases 6: 5–6.

    Article  Google Scholar 

  • Agi, P. I., 1996. Ecology and dynamics of freshwater snail vectors of Schistosoma haematobium (Bilharz, 1852) in Ahoada Local Government Area (Rivers State, Nigeria). Acta Hydrobiologica 38: 9–17.

    Google Scholar 

  • Aho, J., 1978. Freshwater snail populations and the equilibrium theory of island biogeography. I. A case study in southern Finland. Annales Zoologici Fennici 15: 146–154.

    CAS  Google Scholar 

  • Al-Hassan, M. J., 2006a. Metabolic rate, fecundity, egg-hatchability and survival of Biomphalaria alexandrina snails under daylight and total darkness conditions. Journal of the Egyptian German Society of Zoologie 50: 1–12.

    Google Scholar 

  • Al-Hassan, M. J., 2006b. Studies on the phenomenon of anhydrobiosis in the aquatic snail Biomphalaria alexandrina, the intermediate host of Schistosoma mansoni in Egypt. Journal of the Egyptian German Society of Zoologie 49: 79–94.

    Google Scholar 

  • Al-Sheikh, A. H. & M. A. Dagal, 2011. The ecological differences between Bulinus beccari, the intermediate host of Schistosoma haematobium and Biomphalaria pfeifferi, the intermediate host of S. mansoni in Jazan Region, Saudi Arabia. Journal of the Egyptian Society of Parasitology 41: 543–551.

    PubMed  Google Scholar 

  • Annecke, S. & P. N. B. Peacock, 1951. Bilharziasis in the Transvaal. African Journal of Health Professions Education 25: 689–692.

    CAS  Google Scholar 

  • Appleton, C. C., 1977a. The influence of above-optimal constant temperatures on South African Biomphalaria pfeifferi (Krauss) (mollusca: Planorbidae). Transactions of the Royal Society of Tropical Medicine and Hygiene 71: 140–143.

    Article  CAS  PubMed  Google Scholar 

  • Appleton, C. C., 1977b. The influence of temperature on the life-cycle and distribution of Biomphalaria pfeifferi (Krauss, 1948) in South-Eastern Africa. International Journal for Parasitology 7: 335–345.

    Article  CAS  PubMed  Google Scholar 

  • Appleton, C. C., 1978. Review of literature on abiotic factors influencing the distribution and life cycles of bilharziasis intermediate host snails. Malacological Review 11: 1–25.

    Google Scholar 

  • Appleton, C. C. & I. M. Eriksson, 1984. The influence of fluctuating above-optimal temperature regimes on the fecundity of Biomphalaria pfeifferi (Mollusca: Planorbidae). Transactions of the Royal Society of Tropical Medicine and Hygiene 78: 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Appleton, C. C. & H. Madsen, 2012. Human schistosomiasis in wetlands in southern Africa. Wetlands Ecology and Management 20: 253–269.

    Article  Google Scholar 

  • Ashepet, M. G., L. Jacobs, M. Van Oudheusden & T. Huyse, 2020. Wicked solution for wicked problems: citizen science for vector-borne disease control in Africa. Trends in Parasitology 37: 93–96.

    Article  PubMed  Google Scholar 

  • Assare, R. K., Y.-S. Lai, A. Yapi, Y.-N. T. Tian-Bi, M. Ouattara, P. K. Yao, S. Knopp, P. Vounatsou, J. Utzinger & E. K. N’Goran, 2015. The spatial distribution of Schistosoma mansoni infection in four regions of western Cote d’Ivoire. Geospatial Health 10: 69–79.

    Article  Google Scholar 

  • Atia, M. M., M. S. El-Gindy, H. O. Abou-Senna, M. F. A. Soud & M. M. Hassan, 1984. Ecological studies on Bulinus truncatus and Biomphalaria alexandrina in Zagazig, Egypt. Journal of the Egyptian Society of Parasitology 14: 245–250.

    CAS  PubMed  Google Scholar 

  • Badger, L. I. & J. P. O. Oyerinde, 1996. Schistosoma mansoni: effect of aestivation on the intra-molluscan stages and the survival rate of infected Biomphalaria pfeifferi. Annals of Tropical Medicine & Parasitology 90: 617–620.

    Article  CAS  Google Scholar 

  • Baluku, B., G. Josens & M. Loreau, 1989. Etude préliminaire de la densité et de la répartition des mollusques dans deux cours d’eau du Zaïre oriental. Revue de zoologie Africaine 103: 291–302.

    Google Scholar 

  • Bayomy, M. F. F. & J. Joosse, 1987. Effects of temperature and photoperiod on egg laying, body growth and survival of Bulinus truncatus. Neurophysiology 90: 243–256.

    Google Scholar 

  • Betterton, C., 1984. Spatiotemporal distributional patterns of Bulinus rohlfsi (Clessin), Bulinus forskali (Ehrenberg) and Bulinus senegalensis (Muller) in newly-irrigated areas in northern Nigeria. Journal of Molluscan Studies 50: 137–152.

    Google Scholar 

  • Boycott, A. E., 1936. The habitats of fresh-water mollusca in Britain. The Journal of Animal Ecology 5: 116–186.

    Article  Google Scholar 

  • Brackenbury, T. D. & C. C. Appleton, 1991. Effect of controlled temperatures on gametogenesis in the gastropods Physa acuta (physidae) and Bulinus tropicus (planorbidae). Journal of Molluscan Studies 57: 461–469.

    Article  Google Scholar 

  • Bradshaw, W. E. & C. M. Holzapfel, 2001. Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Sciences of the United States of America 98: 14509–14511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen, J. & H. Madsen, 2003. The effect of calcium concentration on the crushing resistance, weight and size of Biomphalaria sudanica (Gastropoda: Planorbidae). Hydrobiologia 490: 181–186.

    Article  Google Scholar 

  • Brown, D., 1994. Freshwater Snails of Africa and Their Importance. Taylor & Francis, London.

    Book  Google Scholar 

  • Buckley, L. B., S. A. Waaser, H. J. MacLean & R. Fox, 2011. Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology 92: 2214–2221.

    Article  PubMed  Google Scholar 

  • Catalano, S., E. Léger, C. B. Fall, A. Borlase, S. D. Diop, D. Berger, B. L. Webster, B. Faye, N. D. Diouf, D. Rollinson, M. Sène, K. Bâ & J. P. Webster, 2020. Multihost transmission of Schistosoma mansoni. Emerging Infectious Diseases 26: 1234–1242.

    PubMed  PubMed Central  Google Scholar 

  • Chapperon, C. & L. Seuront, 2011. Behavioral thermoregulation in a tropical gastropod: links to climate change scenarios. Global Change Biology 17: 1740–1749.

    Article  Google Scholar 

  • Chaudry, A. M. & E. Morgan, 1986. Growth and oviposition of the freshwater pulmonate Bulinus tropicus (Gastropoda) reared in the laboratory under reversed, extreme and irregular ultradian light-dark cycles. Zoological Journal of the Linnean Society 86: 89–100.

    Article  Google Scholar 

  • Chlyeh, G., M. Dodet, B. Delay, K. Khallaayoune & P. Jarne, 2006. Spatio-temporal distribution of freshwater snail species in relation to migration and environmental factors in an irrigated area from Morocco. Hydrobiologia 553: 129–142.

    Article  Google Scholar 

  • Chu, K. Y., F. Arfaa & J. Massoud, 1967a. The survival of Bulinus truncatus buried in mud under experimental outdoor conditions. Annals of Tropical Medicine and Parasitology 61: 6–10.

    Article  CAS  PubMed  Google Scholar 

  • Chu, K. Y., H. Bijan & J. Massoud, 1967b. The ability of Bulinus truncatus, Biomphalaria alexandrina and Lymnaea gedrosiana to survive out of water in the laboratory. Annals of Tropical Medicine and Parasitology 61: 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Chu, K. Y., J. Massoud & F. Arfaa, 1967c. The survival time and fecundity of Bulinus truncatus after desiccation in mud. Annals of Tropical Medicine and Parasitology 61: 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Clennon, J. A., C. H. King, E. M. Muchiri, H. C. Kariuki, J. H. Ouma, P. Mungai & U. Kitron, 2004. Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. American Journal of Tropical Medicine and Hygiene 70: 443–448.

    Article  Google Scholar 

  • Coles, G. C., 1969. Observations on weight loss and oxygen uptake of aestivating Bulinus nasutus, an intermediate host of Schistosoma haematobium. Annals of Tropical Medicine and Parasitology 63: 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Cridland, C. C., 1967. Resistance of Bulinus (Physopsis) globosus, Bulinus (Ph.) africanus, Biomphalaria pfeifferi and Lymnaea natalensis to experimental desiccation. Bulletin of the World Health Organization 36: 507–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dagal, M. A., S. Upatham, M. Kruatrachue & V. Viyanant, 1985. Effects of some physico-chemical factors on the hatching of egg masses and on the survival of juvenile and adult snails of Bulinus (physopsis) abyssinicus. Journal of the Science Society of Thailand 12: 23–30.

    Article  Google Scholar 

  • Damm, S., K. D. B. Dijkstra & H. Hadrys, 2010. Red drifters and dark residents: the phylogeny and ecology of a Plio-Pleistocene dragonfly radiation reflects Africa’s changing environment (Odonata, Libellulidae, Trithemis). Molecular Phylogenetics and Evolution 54: 870–882.

    Article  PubMed  Google Scholar 

  • Dazo, B. C., N. G. Hairston & I. K. Dawood, 1966. The ecology of Bulinus truncatus and Biomphalaria alexandrina and its implications for the control of bilharziasis in the Egypt-49 project area. Bulletin of the World Health Organization 35: 339–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Kock, K. N. & C. T. Wolmarans, 2005a. Distribution, habitats and role as intermediate host of the freshwater snail, Bulinus forskalii, in South Africa. Onderstepoort Journal of Veterinary Research 72: 165–174.

    Google Scholar 

  • De Kock, K. N. & C. T. Wolmarans, 2005b. Distribution and habitats of the Bulinus africanus species group, snail intermediate hosts of Schistosoma haematobium and Schistosoma mattheei in South Africa. Water SA 31: 117–125.

    Google Scholar 

  • De Kock, K. N., C. T. Wolmarans & M. Bornman, 2004. Distribution and habitats of Biomphalaria pfeifferi, snail intermediate host of Schistosoma mansoni, in South Africa. Water SA 30: 29–36.

    Google Scholar 

  • De Leo, G. A., A. Stensgaard, S. H. Sokolow, E. K. N. Goran, A. J. Chamberlin, G. Yang & J. Utzinger, 2020. Schistosomiasis and climate change. BMJ 371: 1–8.

    Google Scholar 

  • De Roeck, E., F. Van Coillie, R. De Wulf, K. Soenen, J. Charlier, J. Vercruysse, W. Hantson, E. Ducheyne & G. Hendrickx, 2014. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study. Geospatial Health 8: S671–S683.

    Article  PubMed  Google Scholar 

  • Dehling, D. M., C. Hof, M. Braendle & R. Brandl, 2010. Habitat availability does not explain the species richness patterns of European lentic and lotic freshwater animals. Journal of Biogeography 37: 1919–1926.

    Google Scholar 

  • Denny, M. W., W. W. Dowd, L. Bilir & K. J. Mach, 2011. Spreading the risk: small-scale body temperature variation among intertidal organisms and its implications for species persistence. Journal of Experimental Marine Biology and Ecology 400: 175–190.

    Article  Google Scholar 

  • Deschiens, R., 1954. Effect of mineralization of water on mollusk vectors of schistosomiasis; practical applications. Bulletin de la Societe de Pathologie Exotique et de ses Filiales 47: 915–929.

    CAS  PubMed  Google Scholar 

  • Dias, M. S., T. Oberdorff, B. Hugueny, F. Leprieur, C. Jézéquel, J. F. Cornu, S. Brosse, G. Grenouillet & P. A. Tedesco, 2014. Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters 17: 1130–1140.

    Article  PubMed  Google Scholar 

  • Diaw, O. T., M. Seye & Y. Sarr, 1988. Résistance à la sécheresse de mollusques du genre Bulinus vecteurs de trématodoses humaines et animales au Sénégal. I. Essais en laboratoire. Revue d’élevage et de Médecine Vétérinaire des Pays Tropicaux 41: 289–291.

    Article  CAS  PubMed  Google Scholar 

  • Dida, G. O., F. B. Gelder, D. N. Anyona, A. S. Matano, P. O. Abuom, S. O. Adoka, C. Ouma, C. K. Kanangire, P. O. Owuor & A. V. O. Ofulla, 2014. Distribution and abundance of schistosomiasis and fascioliasis host snails along the Mara River in Kenya and Tanzania. Infection Ecology and Epidemiology 4: 24281.

    Article  Google Scholar 

  • Dillon, R. T., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Donnelly, F. A., C. C. Appleton & H. J. Schutte, 1983. The influence of salinity on certain aspects of the biology of Bulinus (Physopsis) Africanus. International Journal for Parasitology 13: 539–545.

    Article  CAS  PubMed  Google Scholar 

  • Dussart, G. B. J., 1987. Effects of water flow on the detachment of some aquatic pulmonate gastropods. American Malacological Bulletin 5: 65–72.

    Google Scholar 

  • Ebele, S. & V. G. F. Smith, 1990. Soil humus as a factor conditioning the habitat of Bulinus globosus (morelet) in Zaria city, nigeria. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology 25: 821–831.

    Google Scholar 

  • El-Emam, M. A. & H. Madsen, 1982. The effect of temperature, darkness, starvation and various food types on growth, survival and reproduction of Helisoma duryi, Biomphalaria alexandrina and Bulinus truncatus (Gastropoda: Planorbidae). Hydrobiologia 88: 265–275.

    Article  Google Scholar 

  • El-Emam, M. A. & A. M. Mohamed, 1979. The influence of temperature, darkness, and starvation on growth and survival of Helisoma duryi, Biomphalaria alexandrina and Bulinus truncatus. Egyptian Jounal of Bilharziasis 6: 61–74.

    CAS  Google Scholar 

  • Eleutheriadis, N. & M. Lazaridou-Dimitriadou, 1995. Density and growth of freshwater prosobranch snails (Bithynia graeca and Viviparus contectus) in relation to water chemistry in Serres, Northern Greece. Journal of Molluscan Studies 61: 347–352.

    Article  Google Scholar 

  • El-Hassan, A. A., 1974. The importance of the effect of the chemical composition of water on the population of snails intermediate hosts of schistosomes in Egypt. Folia Parasitologica 21: 169–179.

    CAS  PubMed  Google Scholar 

  • Eliason, E. J., T. D. Clark, M. J. Hague, L. M. Hanson, Z. S. Gallagher, K. M. Jeffries, M. K. Gale, D. A. Patterson, S. G. Hinch & A. P. Farrell, 2011. Differences in thermal tolerance among sockeye salmon populations. Science 332: 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Frank, G. H., 1963. Some factors affecting fecundity of Biomphalaria Pfeifferi (Krauss) in glass aquaria. Bulletin of the World Health Organization 29: 531–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaud, J., 1958. Rythmes biologiques des mollusques vecteurs des bilharzioses. Bulletin of the World Health Organization 18: 751–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genner, M. J. & E. Michel, 2003. Habitat associations of endemic gastropods at Cape Maclear, Lake Malawi. Journal of Molluscan Studies 69: 325–328.

    Article  Google Scholar 

  • Ghandour, A. M., 1987. The resistance of snail intermediate hosts of schistosomiasis in Saudi Arabia to desiccation. Journal of Arid Environments 13: 274–278.

    Article  Google Scholar 

  • Gillet, J., P. Bruaux & J. Wolfs, 1960. Resultats de prospections malacologiques en profondeur au lac Kivu et recherches sur la survie de Biomphalaria en eau profonde. Annales de la Société Belge de Médecine Tropicale 40: 643–649.

    CAS  PubMed  Google Scholar 

  • Githeko, A., S. Lindsay, U. Confalonieri & J. Patz, 2000. Climate change and vector-borne diseases: a regional analysis. Bulletin of the World Health Organization 78: 1136–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimes, J. E. T., D. Croll, W. E. Harrison, J. Utzinger, M. C. Freeman & M. R. Templeton, 2014. The relationship between water, sanitation and schistosomiasis: a systematic review and meta-analysis. PLoS Neglected Tropical Diseases 8: e3296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gryseels, B., 2012. Schistosomiasis. Infectious Disease Clinics of North America 26: 383–397.

    Article  PubMed  Google Scholar 

  • Hamed, M. A., 2010. Strategic control of schistosome intermediate host. Asian Journal of Epidemiology 3: 123–140.

    Article  Google Scholar 

  • Harrison, A. D. & C. J. Shiff, 1966. Factors influencing the distribution of some species of aquatic snails. South African Journal of Science 62: 253–258.

    Google Scholar 

  • Harrison, A. D., W. Nduku & A. S. C. Hooper, 1966. The effects of a high magnesium-to-calcium ratio on the egg-laying rate of an aquatic planorbid snail, Biomphalaria pfeifferi. Annals of Tropical Medicine and Parasitology 60: 212–214.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, A. D., N. V. Williams & G. Greig, 1970. Studies on the effects of calcium bicarbonate concentrations on the biology of biomphalaria pfeifferi (Krauss) (Gastropoda: Pulmonata). Hydrobiologia 36: 317–327.

    Article  Google Scholar 

  • Hauffe, T., R. Schultheiß, B. Van Bocxlaer, K. Prömmel & C. Albrecht, 2016. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa. International Journal of Earth Sciences 105: 1795–1810.

    Article  CAS  Google Scholar 

  • Hira, P. R., 1968. Studies on the capability of the snail transmitting urinary schistosomiasis in western Nigeria to survive dry conditions. West African Medical Journal and Nigerian Practitioner 17: 153–160.

    CAS  Google Scholar 

  • Hu, G. H., H. Jia, K. Y. Song, D. D. Lin, Z. Ju, C. L. Cao, X. Jing, L. Dong & W. S. Jiang, 2005. The role of health education and health promotion in the control of schistosomiasis: experiences from a 12-year intervention study in the Poyang Lake area. Acta Tropica 96: 232–241.

    Article  PubMed  Google Scholar 

  • Hubendick, B., 1958. Factors conditioning the habitat of freshwater snails. Bulletin of the World Health Organization 18: 1072–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess & S. E. Williams, 2012. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 1665–1679.

    Article  Google Scholar 

  • Hussein, M. A., A. H. Obuid-Allah, A. A. Mahmoud & H. M. Fangary, 2011. Population dynamics of freshwater snails (Mollusca: Gastropoda) at Qena Governorate, Upper Egypt. Egyptian Academic Journal of Biological Science 3: 11–22.

    Article  Google Scholar 

  • James, D. R., E. Morgan & D. J. Candy, 2006. Changes in ionic composition of media during culture of Bulinus tropicus and the relationship between ion concentrations and inhibition of growth and egg-laying. The Journal of Applied Ecology 27: 30.

    Article  Google Scholar 

  • Jennings, A. C., K. N. De Kock, & J. A. Van Eeden, 1973. The effect of the total dissolved salts in water on the biology of the freshwater snail Biomphalaria pfeifferi. Wetenskaplike Bydraes Van Die P.U. vir C.H.O. 1–26.

  • Joubert, P. H., S. J. Pretorius, K. N. De Kock & J. A. van Eeden, 1984. The effect of constant low temperatures on the survival of Bulinus africanus (Krauss), Bulinus globosus (Morelet) and Biomphalaria pfeifferi (Krauss). South African Journal of Zoology 19: 314–316.

    Article  Google Scholar 

  • Joubert, P. H., S. J. Pretorius, K. N. De Kock & J. A. Van Eeden, 1985. Survival of Bulinus africanus (Krauss), Bulinus globosus (Morelet) and Biomphalaria pfeifferi (Krauss) at constant high temperatures. South African Journal of Zoology 21: 85–88.

    Article  Google Scholar 

  • Kabatereine, N. B., S. Brooker, E. M. Tukahebwa, F. Kazibwe & A. W. Onapa, 2004. Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Tropical Medicine and International Health 9: 372–380.

    Article  PubMed  Google Scholar 

  • Kalinda, C., M. J. Chimbari & S. Mukaratirwa, 2017a. Effect of temperature on the Bulinus globosusSchistosoma haematobium system. Infectious Diseases of Poverty Infectious Diseases of Poverty 6: 4–10.

    Google Scholar 

  • Kalinda, C., M. Chimbari & S. Mukaratirwa, 2017b. Implications of changing temperatures on the growth, fecundity and survival of intermediate host snails of schistosomiasis: a systematic review. International Journal of Environmental Research and Public Health 14: 80.

    Article  PubMed Central  Google Scholar 

  • Kalinda, C., M. J. Chimbari, W. E. Grant, H. H. Wang, J. N. Odhiambo & S. Mukaratirwa, 2018a. Simulation of population dynamics of Bulinus globosus: effects of environmental temperature on production of Schistosoma haematobium cercariae. PLoS Neglected Tropical Diseases 12: 1–15.

    Article  Google Scholar 

  • Kalinda, C., M. J. Chimbari, M. P. Malatji & S. Mukaratirwa, 2018b. Influence of desiccation on the survival of Bulinus globosus under laboratory conditions. Journal of Freshwater Ecology 33: 461–473.

    Article  Google Scholar 

  • Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.

    Article  PubMed  Google Scholar 

  • King, C. H., 2010. Parasites and poverty: the case of schistosomiasis. Acta Tropica 113: 95–104.

    Article  PubMed  Google Scholar 

  • King, C. H. & D. Bertsch, 2015. Historical perspective: snail control to prevent schistosomiasis. PLoS Neglected Tropical Diseases 9: 2–7.

    Article  Google Scholar 

  • Klutse, A. & B. Baleux, 1996. Etude de la survie de Bulinus truncatus et de Biomphalaria pfeifferi dans les eaux usees epurees par lagunage en zone soudano-sahelienne. Medecine Tropicale 56: 41–47.

    CAS  PubMed  Google Scholar 

  • Krauth, S. J., N. Wandel, S. I. Traore, P. Vounatsou, J. Hattendorf, L. Y. Achi, K. McNeill, E. K. N’Goran & J. Utzinger, 2017. Distribution of intermediate host snails of schistosomiasis and fascioliasis in relation to environmental factors during the dry season in the Tchologo region, Cote d’Ivoire. Advances in Water Resources 108: 386–396.

    Article  Google Scholar 

  • Kubiriza, G. K., H. Madsen, J. S. Likongwe, J. R. Stauffer, J. Kang’Ombe & F. Kapute, 2010. Effect of temperature on growth, survival and reproduction of Bulinus nyassanus (Smith, 1877) (Mollusca: Gastropoda) from Lake Malawi. African Zoology 45: 315–320.

    Article  Google Scholar 

  • Kuo, E. S. L. & E. Sanford, 2009. Geographic variation in the upper thermal limits of an intertidal snail: implications for climate envelope models. Marine Ecology Progress Series 388: 137–146.

    Article  Google Scholar 

  • Lafferty, K. D., 2009. The ecology of climate change and infectious diseases. Ecology 90: 888–900.

    Article  PubMed  Google Scholar 

  • Landesman, W. J., B. F. Allan, R. B. Langerhans, T. M. Knight & J. M. Chase, 2007. Inter-annual associations between precipitation and human incidence of West Nile virus in the United States. Vector-Borne and Zoonotic Diseases 7: 337–343.

    Article  PubMed  Google Scholar 

  • Lo, N. C., D. Gurarie, N. Yoon, J. T. Coulibaly, C. H. King, E. Bendavid & J. R. Andrews, 2018. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proceedings of the National Academy of Sciences 115: 1–8.

    Article  Google Scholar 

  • Loreau, M. & B. Baluku, 1991. Shade as a means of ecological control of Biomphalaria pfeifferi. Annals of Tropical Medicine and Parasitology 85: 443–446.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, H., 1987. Effect of calcium concentration on growth and egg laying of Helisoma duryi, Biomphalaria alexandrina, B. camerunensis and Bulinus truncatus (Gastropoda: Planorbidae). Journal of Applied Ecology 24: 823–836.

    Article  CAS  Google Scholar 

  • Malek, E. A., 1958. Factors conditioning the habitat of bilharziasis intermediate hosts of the family Planorbidae. Bulletin of the World Health Organization 18: 785–818.

    PubMed Central  Google Scholar 

  • Manyangadze, T., M. J. Chimbari, M. Gebreslasie, P. Ceccato & S. Mukaratirwa, 2016. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. Parasites and Vectors 9: 572.

    Article  PubMed  Google Scholar 

  • Marti, H., 1986. Field observations on the population dynamics of Bulinus globosus, the intermediate host of Schistosoma haematobium in the Ifakara area, Tanzania. The Journal of Parasitology 72: 119–124.

    Article  CAS  PubMed  Google Scholar 

  • McCreesh, N. & M. Booth, 2014a. The effect of increasing water temperatures on Schistosoma mansoni transmission and Biomphalaria pfeifferi population dynamics: an agent-based modelling study. PLoS ONE 9: e101462.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCreesh, N. & M. Booth, 2014b. The effect of simulating different intermediate host snail species on the link between water temperature and schistosomiasis risk. PLoS ONE 9: e87892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier-Brook, C., D. Haas, G. Winter & T. Zeller, 1987. Hydrochemical factors limiting the distribution of Bulinus truncatus (Pulmonata: Planorbidae). American Malacological Bulletin 5: 85–90.

    Google Scholar 

  • Moher, D., A. Liberati, J. Tetzlaff & D. G. Altman, 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine 151: 264–269.

    Article  PubMed  Google Scholar 

  • Monahan, W. B., 2009. A mechanistic niche model for measuring species’ distributional responses to seasonal temperature gradients. PLoS ONE 4: e7921.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monde, C., S. Syampungani & P. J. Van den Brink, 2015. Exploring the potential of host-environment relationships in the control of schistosomiasis in Africa. African Journal of Aquatic Science 40: 47–55.

    Article  Google Scholar 

  • Mostafa, B. B. & H. S. M. Gad, 1997. Effect of UV-irradiaton, gamma irradiation and praziquantel on infected Biomphalaria alexandrina snails. Journal of the Egyptian Society of Parasitology 27: 35–46.

    CAS  PubMed  Google Scholar 

  • Mulero, S., O. Rey, N. Arancibia, S. Mas-Coma & J. Boissier, 2019. Persistent establishment of a tropical disease in Europe: the preadaptation of schistosomes to overwinter. Parasites and Vectors BMC 12: 379.

    Article  Google Scholar 

  • Ndifon, G. T. & F. M. A. Ukoli, 1989. Ecology of freshwater snails in south-western Nigeria. I: distribution and habitat preferences. Hydrobiologia 171: 231–253.

    Article  Google Scholar 

  • Ndione, R. A., D. Diop, G. Riveau, C. T. Ba & N. Jouanard, 2018. Role of environmental parameters on the density of intermediate host snails of human schistosoma during the year in the commune of Richard-Toll, Senegal| Rôle des paramètres environnementaux sur la densité des mollusques hôtes intermédiaires des schistos. Medecine et Sante Tropicales 28: 158–164.

    Article  CAS  PubMed  Google Scholar 

  • Nduku, W. K. & A. D. Harrison, 1976. Calcium as a limiting factor in the biology of Biomphalaria pfeifferi (Krauss), (Gastropoda: Planorbidae). Hydrobiologia 49: 143–170.

    Article  CAS  Google Scholar 

  • Nduku, W. K. & A. D. Harrison, 1980. Cationic responses of organs and haemolymph of Biomphalaria pfeifferi (Krauss), Biomphalaria glabrata (Say) and Helisoma trivolvis (Say) (Gastropoda: Planorbirdae) to cationic alterations of the medium. Hydrobiologia 68: 119–138.

    Article  CAS  Google Scholar 

  • O’Keeffe, J. H., 2006. Population biology of the freshwater snail Bulinus globosus on the Kenya Coast. II. Feeding and density effects on population parameters. The Journal of Applied Ecology 22: 73–84.

    Article  Google Scholar 

  • Ohlweiler, F. P. & T. Kawano, 2001. Effects of the desiccation on Biomphalaria tenagophila (Orbigny, 1835) (Mollusca) infected by Schistosoma mansoni Sambon, 1907. Memorias do Instituto Oswaldo Cruz 96: 737–749.

    Article  CAS  PubMed  Google Scholar 

  • Økland, J., 1983. Factors regulating the distribution of freshwater snails (Gastropoda) in Norway. Malacologia 24: 277–288.

    Google Scholar 

  • Ouzzani, M., H. Hammady, Z. Fedorowicz & A. Elmagarmid, 2016. Rayyan—a web and mobile app for systematic reviews. Systematic Reviews 5: 210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyeyi, T. I. & G. T. Ndifon, 1990. A note on the post-aestivation biology of Bulinus rohlfsi (Clessin), an intermediate host of Schistosma haematobium (Bilharz) in Northern Nigeria. Annals of Tropical Medicine and Parasitology 84: 535–536.

    Article  CAS  PubMed  Google Scholar 

  • Parmesan, C., T. L. Root & M. R. Willig, 2000. Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society 81: 443–450.

    Article  Google Scholar 

  • Pedersen, U. B., M. Stendel, N. Midzi, T. Mduluza, W. Soko, A.-S. Stensgaard, B. J. Vennervald, S. Mukaratirwa & T. K. Kristensen, 2014. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe. Parasites and Vectors 7: 536.

    Article  PubMed  Google Scholar 

  • Perez-Saez, J., T. Mande, N. Ceperley, E. Bertuzzo, L. Mari, M. Gatto & A. Rinaldo, 2016. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates. Proceedings of the National Academy of Sciences 113: 6427–6432.

    Article  CAS  Google Scholar 

  • Perez-Saez, J., T. Mande, J. Larsen, N. Ceperley & A. Rinaldo, 2017. Classification and prediction of river network ephemerality and its relevance for waterborne disease epidemiology. Advances in Water Resources 110: 263–278.

    Article  Google Scholar 

  • Pflüger, W., M. Roushdy & M. El-Emam, 1983. Prepatency of Schistosoma haematobium in snails at different constant temperatures. Journal of the Egyptian Society of Parasitology 13: 513–519.

    PubMed  Google Scholar 

  • Poulin, R., 2006. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132: 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Qian, C., Y. Zhang, X. Zhang, C. Yuan, Z. Gao, H. Yuan & J. Zhong, 2018. Effectiveness of the new integrated strategy to control the transmission of Schistosoma japonicum in China: a systematic review and meta-analysis. Parasite 25: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabone, M., J. H. Wiethase, F. Allan, A. N. Gouvras, T. Pennance, A. A. Hamidou, B. L. Webster, R. Labbo, A. M. Emery, A. D. Garba & D. Rollinson, 2019. Freshwater snails of biomedical importance in the Niger River Valley: evidence of temporal and spatial patterns in abundance, distribution and infection with Schistosoma spp. Parasites and Vectors 12: 498.

    Article  PubMed  Google Scholar 

  • Rollinson, D., J. R. Stothard & V. R. Southgate, 2002. Interactions between intermediate snail hosts of the genus Bulinus and schistosomes of the Schistosoma haematobium group. Parasitology 123: 245–260.

    Article  Google Scholar 

  • Rollinson, D., S. Knopp, S. Levitz, J. R. Stothard, L. T. Tchuenté, A. Garba, K. A. Mohammed, N. Schur, B. Person, D. G. Colley & J. Utzinger, 2013. Time to set the agenda for schistosomiasis elimination. Acta Tropica 128: 423–440.

    Article  PubMed  Google Scholar 

  • Rubaba, O., M. J. Chimbari & S. Mukaratirwa, 2016. The role of snail aestivation in transmission of schistosomiasis in changing climatic conditions. African Journal of Aquatic Science 41: 143–150.

    Article  Google Scholar 

  • Sacolo, H., M. Chimbari & C. Kalinda, 2018. Knowledge, attitudes and practices on Schistosomiasis in sub-Saharan Africa: a systematic review. BMC Infectious Diseases 18: 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanford, E. & M. W. Kelly, 2011. Local adaptation in marine invertebrates. Annual Review of Marine Science 3: 509–535.

    Article  PubMed  Google Scholar 

  • Schutte, C. H. & G. H. Frank, 1964. Observations on the distribution of freshwater mollusca and chemistry of the natural waters in the South-Eastern Transvaal and adjacent Northern Swaziland. Bulletin of the World Health Organization 30: 389–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiff, C. J., 1960. Observations on the capability of freshwater vector snails to survive dry conditions. Journal of tropical Medicine and Hygiene 63: 89–93.

    CAS  Google Scholar 

  • Shiff, C., 2017. Why reinvent the wheel? Lessons in schistosomiasis control from the past. PLoS Neglected Tropical Diseases 11: e0005812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smale, D. A. & T. Wernberg, 2013. Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B: Biological Sciences 280: 20122879.

    Google Scholar 

  • Sokolow, S. H., C. L. Wood, I. J. Jones, K. D. Lafferty, A. M. Kuris, M. H. Hsieh & G. A. De Leo, 2018. To reduce the global burden of human schistosomiasis, use ‘old fashioned’ snail control. Trends in Parasitology 34: 23–40.

    Article  PubMed  Google Scholar 

  • Stensgaard, A. S., A. Jørgensen, N. B. Kabatereine, C. Rahbek & T. K. Kristensen, 2006. Modeling freshwater snail habitat suitability and areas of potential snail-borne disease transmission in Uganda. Geospatial Health 1: 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Stensgaard, A.-S., J. Utzinger, P. Vounatsou, E. Huerlimann, N. Schur, C. F. L. Saarnak, C. Simoonga, P. Mubita, N. B. Kabatereine, L.-A. T. Tchuente, C. Rahbek & T. K. Kristensen, 2013. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter? Acta Tropica 128: 378–390.

    Article  PubMed  Google Scholar 

  • Stensgaard, A.-S., M. Booth, G. Nikulin & N. McCreesh, 2016. Combining process-based and correlative models improves predictions of climate change effects on Schistosoma mansoni transmission in eastern Africa. Geospatial Health 11: 406.

    Article  PubMed  Google Scholar 

  • Stensgaard, A. S., P. Vounatsou, M. E. Sengupta & J. Utzinger, 2019. Schistosomes, snails and climate change: current trends and future expectations. Acta Tropica 190: 257–268.

    Article  PubMed  Google Scholar 

  • Stillman, J. H., 2002. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integrative and Comparative Biology 42: 790–796.

    Article  PubMed  Google Scholar 

  • Sturrock, R. F., 1965. Studies on the biology of Biomphalaria angulosa mandahl-barth and on its ability to act as an intermediate host of Schistosoma mansoni. Annals of Tropical Medicine and Parasitology 59: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Sturrock, R. F., 1966. The influence of temperature on the biology of Biomphalaria pfeifferi (krauss), an intermediate host of Schistosoma mansoni. Annals of Tropical Medicine and Parasitology 60: 100–105.

    Article  CAS  PubMed  Google Scholar 

  • Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino & R. B. Huey, 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America 111: 5610–5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, H. & M. Tsuji, 1994. From discovery to eradication of schistosomiasis in Japan: 1847–1996. International Journal for Parasitology 27: 1465–1480.

    Article  Google Scholar 

  • Tchakonté, S., G. A. Ajeagah, D. Diomandé, A. I. Camara & P. Ngassam, 2014. Diversity, dynamic and ecology of freshwater snails related to environmental factors in urban and suburban streams in Douala-Cameroon (Central Africa). Aquatic Ecology 48: 379–395.

    Article  Google Scholar 

  • Teesdale, C., 1962. Ecological observations on the molluscs of significance in the transmission of bilharziasis in Kenya. Bulletin of the World Health Organization 27: 759–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, J. D. & P. W. G. Daldorph, 1991. Evaluation of bioengineering approaches aimed at controlling pulmonate snails: the effects of light attenuation and mechanical removal of macrophytes. The Journal of Applied Ecology 28: 532.

    Article  Google Scholar 

  • Tolba, M. R. A. & A. M. Awad, 1995. Effect of water quality on the fecundity and hatching of the pulmonate gastropods Bulinus truncatus, Biomphalaria alexandrina and Lymnaea natalensis. Journal of the Egyptian German Society of Zoologie 17: 93–102.

    Google Scholar 

  • Ugbomoiko, U. S., 1998. Ecological studies on Bulinus globosus, Morelet and Bulinus rohlfsi, Clessin (Mollusca: Pulmonata) in four locations in Edo State, Nigeria. Parasitica 54: 129–140.

    Google Scholar 

  • Utzinger, J., C. Mayombana, K. Mez & M. Tanner, 1997a. Evaluation of chemical and physical-morphological factors as potential determinants of Biomphalaria pfeifferi. Distribution 92: 323–328.

    CAS  Google Scholar 

  • Utzinger, J., C. Mayombana, T. Smith & M. Tanner, 1997b. Spatial microhabitat selection by Biomphalaria pfeifferi in a small perennial river in Tanzania. Hydrobiologia 356: 53–60.

    Article  Google Scholar 

  • Van Aardt, W. J. & S. S. J. Steytler, 2007. Shell permeability and desiccation physiology of the freshwater snail Bulinus (Bulinus) Tropicus (Krauss). Malacologia 49: 339–349.

    Article  Google Scholar 

  • Van Bocxlaer, B., D. Van Damme & C. S. Feibel, 2008. Gradual versus punctuated equilibrium evolution in the Turkana Basin molluscs: evolutionary events or biological invasions? Evolution 62: 511–520.

    Article  PubMed  Google Scholar 

  • Van Bocxlaer, B., C. Albrecht & J. R. Stauffer, 2014. Growing population and ecosystem change increase human schistosomiasis around Lake Malawi. Trends in Parasitology 30: 217–220.

    Article  PubMed  Google Scholar 

  • Verlicchi, P. & V. Grillini, 2020. Surfacewater and groundwater quality in South Africa and Mozambique: analysis of the most critical pollutants for drinking purposes and challenges in water treatment selection. Water 12: 305.

    Article  CAS  Google Scholar 

  • Watson, J. M., 1958. Ecology and distribution of Bulinus truncatus in the Middle East; with comments on the effect of some human activities in their relationship to the snail host on the incidence of Bilharziasis haematobia in the Middle East and Africa. Bulletin of the World Health Organization 18: 833–894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO, 1985. The Control of Schistosomiasis: Report of a WHO Expert Committee.

  • WHO, 2015. The World Health Report 2015. Genève.

  • Williams, N. V., 1970. Studies on aquatic pulmonate snails in central Africa. II. Experimental investigation of field distribution patterns. Malacologia 10: 165–180.

    Google Scholar 

  • Wood, C. L., S. H. Sokolow, I. J. Jones, A. J. Chamberlin, K. D. Lafferty, A. M. Kuris, M. Jocque, S. Hopkins, G. Adams, J. C. Buck, A. J. Lund, A. E. Garcia-Vedrenne, E. Fiorenza, J. R. Rohr, F. Allan, B. Webster, M. Rabone, J. P. Webster, L. Bandagny, R. Ndione, S. Senghor, A. M. Schacht, N. Jouanard, G. Riveau & G. A. De Leo, 2019. Precision mapping of snail habitat provides a powerful indicator of human schistosomiasis transmission. Proceedings of the National Academy of Sciences of the United States of America 116: 23182–23191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolhouse, M. E. J. & S. K. Chandiwana, 1989. Spatial and temporal heterogeneity in the population dynamics of Bulinus globosus and Biomphalaria pfeifferi and in the epidemiology of their infection with schistosomes. Parasitology 98: 21–34.

    Article  PubMed  Google Scholar 

  • Woolhouse, M. E. J. & S. K. Chandiwana, 1990. Population dynamics model for Bulinus globosus, intermediate host for Schistosoma haematobium, in river habitats. Acta Tropica 47: 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse, M. E. J. & P. Taylor, 1990. Survival rates of Bulinus globosus during aestivation. Annals of Tropical Medicine and Parasitology 84: 293–294.

    Article  CAS  PubMed  Google Scholar 

  • Wright, C. A., J. Klein & D. H. Eccles, 1967. Endemic species of Bulinus (Mollusca: Planorbidae) in Lake Malawi (= Lake Nyasa). Journal of Zoology 151: 199–209.

    Article  Google Scholar 

  • Yigezu, G., Y. Mengesha, D. Yewhalaw, S. T. Mereta, M. Ahmednur, Y. Abdie, B. Mandefro, A. Beyene & H. Kloos, 2018. Habitat suitability modelling for predicting potential habitats of freshwater snail intermediate hosts in Omo-Gibe river basin, Southwest Ethiopia. Ecological Informatics 45: 70–80.

    Article  Google Scholar 

  • Zimmermann, N. E., N. G. Yoccoz, T. C. Edwards, E. S. Meier, W. Thuiller, A. Guisan, D. R. Schmatz & P. B. Pearman, 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America 106: 19723–19728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the biomedical reference librarians of the KU Leuven Libraries—2Bergen—learning Centre Désiré Collen (Leuven, Belgium) for their help in conducting the systematic literature search. We would like to thank two anonymous reviewers for their constructive comments on an earlier version of this manuscript.

Funding

Tim Maes and Cyril Hammoud both benefited from an FWO fellowship Grant (Ref. 1S86319N and 11C5219N, respectively) of the Research Foundation—Flanders.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The systematic search was designed and carried out by T.M. Screening of the literature and data collection were carried out by T.M. and C.H. The first draft of the manuscript was written by T.M. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tim Maes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling editor: Manuel Lopes-Lima

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, T., Hammoud, C., Volckaert, F.A.M. et al. A call for standardised snail ecological studies to support schistosomiasis risk assessment and snail control efforts. Hydrobiologia 848, 1773–1793 (2021). https://doi.org/10.1007/s10750-021-04547-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04547-4

Keywords

Navigation