Skip to main content

Advertisement

Log in

Modulation of Immunologic Response by Preventive Everolimus Application in a Rat CPB Model

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Everolimus (EVL) is widely used in solid organ transplantation. It is known to have antiproliferative and immunosuppressive abilities via inhibition of the mTOR pathway. Preventive EVL administration may lower inflammation induced by cardiopulmonary bypass (CPB) and reduce systemic inflammatory response syndrome (SIRS). After oral loading with EVL 2.5 mg/kg/day (n = 11) or placebo (n = 11) for seven consecutive days, male Wistar rats (400–500 g) were connected to a miniaturised heart-lung-machine performing a deep hypothermic circulatory arrest protocol. White blood cells (WBC) were significantly reduced in EVL-pretreated animals before start of CPB with a preserved reduction by trend at all other time points. Ischemia/reperfusion led to decreased glucose levels. Application of EVL significantly increased glucose levels after reperfusion. In addition, potassium levels were significantly lower in EVL-treated animals at the end of reperfusion. Immunoblotting revealed increased S6 levels after CPB. EVL decreased phosphorylation of S6 in the heart and kidney, which indicates an inhibition of mTOR pathway. Moreover, EVL significantly modified phosphorylation of AKT, while decreasing IL2, IL6, RANTES, and TNFα (n = 6). Preventive application of EVL may modulate inflammation by inhibition of mammalian target of rapamycin (mTOR) pathway and reduction of proinflammatory cytokines. This may be beneficial to evade SIRS-related morbidities after CPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pintar, T., and C.D. Collard. 2003. The systemic inflammatory response to cardiopulmonary bypass. Anesthesiology Clinics of North America 21(3): 453–64.

    Article  CAS  PubMed  Google Scholar 

  2. Hall, R. 2013. Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia 27(5): 983–1033.

    Article  PubMed  Google Scholar 

  3. Dieleman, J.M. 2013. Corticosteroids for the inflammatory response to cardiopulmonary bypass: an update. Current Pharmaceutical Design 19(22): 3979–91.

    Article  CAS  PubMed  Google Scholar 

  4. Raja, S.G., and G.D. Dreyfus. 2005. Modulation of systemic inflammatory response after cardiac surgery. Asian Cardiovascular & Thoracic Annals 13(4): 382–95.

    Article  Google Scholar 

  5. Luehr, M., J. Bachet, F.-W. Mohr, and C.D. Etz. 2014. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. European Journal of Cardio-Thoracic Surgery 45(1): 27–39.

    Article  PubMed  Google Scholar 

  6. Engels, M., E. Bilgic, A. Pinto, E. Vasquez, L. Wollschläger, H. Steinbrenner, et al. 2014. A cardiopulmonary bypass rat with deep hypothermic circulatory arrest model for the investigation of the systemic inflammation response and induced organ damage. Journal of Inflammation 11: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ganschow, R., J.M. Pollok, M. Jankofsky, and G. Junge. 2014. The role of everolimus in liver transplantation. Clinical and Experimental Gastroenterology 7: 329–43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thomson, A.W., H.R. Turnquist, and G. Raimondi. 2009. Immunoregulatory functions of mTOR inhibition. Nature Reviews Immunology 9(5): 324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ponticelli, C. 2004. The pleiotropic effects of mTor inhibitors. Journal of Nephrology 17(6): 762–8.

    CAS  PubMed  Google Scholar 

  10. Adkins, J.R., M.R. Castresana, Z. Wang, and W.H. Newman. 2004. Rapamycin inhibits release of tumor necrosis factor-alpha from human vascular smooth muscle cells. American Surgeon 70(5): 384–7. discussion 7–8.

    PubMed  Google Scholar 

  11. Ferri, N., A. Granata, C. Pirola, F. Torti, P.J. Pfister, R. Dorent, et al. 2008. Fluvastatin synergistically improves the antiproliferative effect of everolimus on rat smooth muscle cells by altering p27Kip1/cyclin E expression. Molecular Pharmacology 74(1): 144–53.

    Article  CAS  PubMed  Google Scholar 

  12. Mueller, M.A., F. Beutner, D. Teupser, U. Ceglarek, and J. Thiery. 2008. Prevention of atherosclerosis by the mTOR inhibitor everolimus in LDLR-/- mice despite severe hypercholesterolemia. Atherosclerosis 198(1): 39–48.

    Article  CAS  PubMed  Google Scholar 

  13. Roth, I., T.V. Borstel, M. Seyfarth, and P. Schmucker. 1999. Perioperative serum levels of tumour-necrosis-factor alpha (TNF-α), IL-1β, IL-6, IL-10 and soluble IL-2 receptor in patients undergoing cardiac surgery with cardiopulmonary bypass without and with correction for haemodilution. Clinical and Experimental Immunology 118(2): 242–6.

    Article  Google Scholar 

  14. Takada, M., K.C. Nadeau, G.D. Shaw, K.A. Marquette, and N.L. Tilney. 1997. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. Journal of Clinical Investigation 99(11): 2682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Braunersreuther, V., C. Pellieux, G. Pelli, F. Burger, S. Steffens, C. Montessuit, et al. 2010. Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice. Journal of Molecular and Cellular Cardiology 48(4): 789–98.

    Article  CAS  PubMed  Google Scholar 

  16. Kirchner, G., I. Meier-Wiedenbach, and M. Manns. 2004. Clinical pharmacokinetics of everolimus. Clinical Pharmacokinetics 43(2): 83–95.

    Article  CAS  PubMed  Google Scholar 

  17. Cicora, F., J. Roberti, D. Vasquez, D. Guerrieri, N. Lausada, P. Cicora, et al. 2012. Preconditioning donor with a combination of tacrolimus and rapamacyn to decrease ischaemia-reperfusion injury in a rat syngenic kidney transplantation model. Clinical and Experimental Immunology 167(1): 169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farb, A., M. John, E. Acampado, F.D. Kolodgie, M.F. Prescott, and R. Virmani. 2002. Oral everolimus inhibits in-stent neointimal growth. Circulation 106(18): 2379–84.

    Article  CAS  PubMed  Google Scholar 

  19. Schaffer, S.A., and H.J. Ross. 2010. Everolimus: efficacy and safety in cardiac transplantation. Expert Opinion on Drug Safety 9(5): 843–54.

    Article  CAS  PubMed  Google Scholar 

  20. Ensor, C.R., and C.T. Doligalski. 2013. Proliferation signal inhibitor toxicities after thoracic transplantation. Expert Opinion on Drug Metabolism & Toxicology 9(1): 63–77.

    Article  CAS  Google Scholar 

  21. Vanoverschelde, J.L., M.F. Janier, J.E. Bakke, D.R. Marshall, and S.R. Bergmann. 1994. Rate of glycolysis during ischemia determines extent of ischemic injury and functional recovery after reperfusion. The American Journal of Physiology 267(5 Pt 2): H1785–94.

    CAS  PubMed  Google Scholar 

  22. Lopaschuk, G.D., R.B. Wambolt, and R.L. Barr. 1993. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. Journal of Pharmacology and Experimental Therapeutics 264(1): 135–44.

    CAS  PubMed  Google Scholar 

  23. Sarbassov, D.D., D.A. Guertin, S.M. Ali, and D.M. Sabatini. 2005. Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science (New York, NY) 307(5712): 1098–101.

    Article  CAS  Google Scholar 

  24. Zeiser, R., and R.S. Negrin. 2008. Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy. Cell Cycle (Georgetown, Tex) 7(4): 458–62.

    Article  CAS  Google Scholar 

  25. Benczik, M., and S.L. Gaffen. 2004. The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunological Investigations 33(2): 109–42.

    Article  CAS  PubMed  Google Scholar 

  26. Cavusoglu, E., J.D. Marmur, M.R. Hojjati, V. Chopra, M. Butala, R. Subnani, et al. 2011. Plasma interleukin-10 levels and adverse outcomes in acute coronary syndrome. The American Journal of Medicine 124(8): 724–30.

    Article  CAS  PubMed  Google Scholar 

  27. Martinet, W., S. Verheye, I.D. Meyer, J.-P. Timmermans, D.M. Schrijvers, I.V. Brussel, et al. 2012. Everolimus triggers cytokine release by macrophages rationale for stents eluting Everolimus and a Glucocorticoid. Arteriosclerosis, Thrombosis, and Vascular Biology 32(5): 1228–35.

    Article  CAS  PubMed  Google Scholar 

  28. Radtke, S., S. Wuller, X.P. Yang, B.E. Lippok, B. Mutze, C. Mais, et al. 2010. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation. Journal of Cell Science 123(Pt 6): 947–59.

    Article  CAS  PubMed  Google Scholar 

  29. Mori, T., T. Miyamoto, H. Yoshida, M. Asakawa, M. Kawasumi, T. Kobayashi, et al. 2011. IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. International Immunology 23(11): 701–12.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez-Comendador, J.M., J.R. Alvarez, I. Mosquera, J. Sierra, B. Adrio, J.G. Carro, et al. 2009. Preoperative statin treatment reduces systemic inflammatory response and myocardial damage in cardiac surgery. European Journal of Cardio-Thoracic Surgery 36(6): 998–1005.

    Article  PubMed  Google Scholar 

  31. Englum, B.R., N.D. Andersen, A.M. Husain, J.P. Mathew, and G.C. Hughes. 2013. Degree of hypothermia in aortic arch surgery – optimal temperature for cerebral and spinal protection: deep hypothermia remains the gold standard in the absence of randomized data. Annals of Cardiothoracic Surgery 2(2): 184–93.

    PubMed  PubMed Central  Google Scholar 

  32. Keir, I., and J.A. Kellum. 2015. Acute kidney injury in severe sepsis: pathophysiology, diagnosis, and treatment recommendations. Journal of Veterinary Emergency and Critical Care (San Antonio, Tex.) 25(2): 200–9.

    Article  Google Scholar 

  33. Timmers, L., G. Pasterkamp, V.C. de Hoog, F. Arslan, Y. Appelman, and D.P. de Kleijn. 2012. The innate immune response in reperfused myocardium. Cardiovascular Research 94(2): 276–83.

    Article  CAS  PubMed  Google Scholar 

  34. Magnuson, B., B. Ekim, and D.C. Fingar. 2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. The Biochemical Journal 441(1): 1–21.

    Article  CAS  PubMed  Google Scholar 

  35. Aslan JE, Tormoen GW, Loren CP, Pang J, McCarty OJT. S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation2011 2011-09-15 00:00:00. 3129-36 p.

  36. O’Donnell, A., S. Faivre, H.A. Burris, D. Rea, V. Papadimitrakopoulou, N. Shand, et al. 2008. Phase I pharmacokinetic and Pharmacodynamic study of the oral mammalian target of Rapamycin inhibitor Everolimus in patients with advanced solid tumors. Journal of Clinical Oncology 26(10): 1588–95.

    Article  PubMed  Google Scholar 

  37. Rodrigues, S.F., and D.N. Granger. 2010. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. Cardiovascular Research 87(2): 291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woodruff, T.M., T.V. Arumugam, I.A. Shiels, R.C. Reid, D.P. Fairlie, and S.M. Taylor. 2004. Protective effects of a potent c5a receptor antagonist on experimental acute limb ischemia-reperfusion in rats. The Journal of Surgical Research 116(1): 81–90.

    Article  CAS  PubMed  Google Scholar 

  39. Neumayer, C., A. Fügl, J. Nanobashvili, R. Blumer, A. Punz, H. Gruber, et al. 2006. Combined enzymatic and antioxidative treatment reduces ischemia-reperfusion injury in rabbit skeletal muscle. The Journal of Surgical Research 133(2): 150–8.

    Article  CAS  PubMed  Google Scholar 

  40. Ruvinsky, I., N. Sharon, T. Lerer, H. Cohen, M. Stolovich-Rain, T. Nir, et al. 2005. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes and Development 19(18): 2199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiebrich, H.B., E.J. Siemerink, A.H. Brouwers, T.P. Links, W.S. Remkes, G.A. Hospers, et al. 2011. Everolimus induces rapid plasma glucose normalization in insulinoma patients by effects on tumor as well as normal tissues. The Oncologist 16(6): 783–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suh, S.W., E.T. Gum, A.M. Hamby, P.H. Chan, and R.A. Swanson. 2007. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. Journal of Clinical Investigation 117(4): 910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woerly, G., N. Brooks, and B. Ryffel. 1996. Effect of rapamycin on the expression of the IL-2 receptor (CD25). Clinical and Experimental Immunology 103(2): 322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lehle, K., D.E. Birnbaum, and J.G. Preuner. 2005. Predominant inhibition of interleukin-6 synthesis in patient-specific endothelial cells by mTOR inhibitors below a concentration range where cell proliferation is affected and mitotic arrest takes place. Transplantation Proceedings 37(1): 159–61.

    Article  CAS  PubMed  Google Scholar 

  45. Vitiello, D., P.-E. Neagoe, M.G. Sirois, and M. White. 2015. Effect of everolimus on the immunomodulation of the human neutrophil inflammatory response and activation. Cellular & Molecular Immunology 12(1): 40–52.

    Article  CAS  Google Scholar 

  46. Suyani E, Derici UB, Sahin T, Ofluoglu E, Pasaoglu H, Erdem O, et al. Effects of Everolimus on Cytokines, Oxidative Stress, and Renal Histology in Ischemia-Reperfusion Injury of the Kidney. [research-article] 2009 [updated 2009/10/09/2013/11/26/09:59:02]; Available from: http://informahealthcare.com/doi/abs/10.3109/08860220903134555files/67/08860220903134555.html.

  47. Martinez-Palli, G., R. Hirose, T. Liu, F. Xu, K. Dang, J. Feiner, et al. 2011. Donor pre-treatment with everolimus or cyclosporine does not reduce ischaemia–reperfusion injury in a rat kidney transplant model. Nephrology, Dialysis, Transplantation 26(6): 1813–20.

    Article  CAS  PubMed  Google Scholar 

  48. Cai, Z., W. Luo, H. Zhan, and G.L. Semenza. 2013. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proceedings of the National Academy of Sciences 110(43): 17462–7.

    Article  CAS  Google Scholar 

  49. Nashan, B., and F. Citterio. 2012. Wound healing complications and the use of mammalian target of rapamycin inhibitors in kidney transplantation: a critical review of the literature. Transplantation 94(6): 547–61.

    Article  CAS  PubMed  Google Scholar 

  50. Vilahur, G., and L. Badimon. 2014. Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor. Frontiers in Physiology 5: 496.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Golovkin, A.S., V.G. Matveeva, I.V. Kudryavtsev, M.N. Chernova, Y.V. Bayrakova, D.L. Shukevich, et al. 2013. Perioperative dynamics of TLR2, TLR4, and TREM-1 expression in monocyte subpopulations in the setting of on-pump coronary artery bypass surgery. ISRN Inflammation 2013: 817901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmitz, F., A. Heit, S. Dreher, K. Eisenächer, J. Mages, T. Haas, et al. 2008. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. European Journal of Immunology 38(11): 2981–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author Contribution

AP: performed research/study, analysed data, wrote the paper

AJ: performed research/study, analysed data, collected data

LD: performed research/study, analysed data, collected data

MI: performed research/study, analysed data, collected data

MK: performed research/study, analysed data, collected data

AL: designed research/study, manuscript revision

PA: designed research/study, performed research/study, manuscript revision

UB: designed research/study, performed research/study, analysed data, manuscript revision

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Akhyari.

Ethics declarations

Funding

This work was supported by a grant from Novartis Pharma GmbH.

Conflict of Interest

The authors of this manuscript have no conflicts of interest to disclose.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Supplemental Figure S1

(PPTX 95 kb)

Supplemental Figure S2

(PPTX 87 kb)

Supplemental Figure S3

(PPTX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, A., Jahn, A., Immohr, M.B. et al. Modulation of Immunologic Response by Preventive Everolimus Application in a Rat CPB Model. Inflammation 39, 1771–1782 (2016). https://doi.org/10.1007/s10753-016-0412-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0412-5

KEY WORDS

Navigation