Skip to main content

Advertisement

Log in

Intermedin1–53 Inhibits NLRP3 Inflammasome Activation by Targeting IRE1α in Cardiac Fibrosis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of nucleotide-binding oligomerization domain (NOD)–like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigated cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography, and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) were found in Ang II–treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II–induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3, and anti-fibrotic response. In conclusion, IMD alleviated cardiac fibrosis by inhibiting NLRP3 inflammasome activation through suppressing IRE1α via the cAMP/PKA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The data and material are available from the corresponding author on reasonable request.

References

  1. Ma, Z.G., Y.P. Yuan, H.M. Wu, X. Zhang, and Q.Z. Tang. 2018. Cardiac fibrosis: New insights into the pathogenesis. International Journal of Biological Sciences 14: 1645–1657. https://doi.org/10.7150/ijbs.28103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kong, P., P. Christia, and N.G. Frangogiannis. 2014. The pathogenesis of cardiac fibrosis. Cellular And Molecular Life Sciences 71: 549–574. https://doi.org/10.1007/s00018-013-1349-6.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, B., and R. Tian. 2018. Mitochondrial dysfunction in pathophysiology of heart failure. Journal of Clinical Investigation 128: 3716–3726. https://doi.org/10.1172/JCI120849.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tanjore, H., W.E. Lawson, and T.S. Blackwell. 2013. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochimica et Biophysica Acta 1832: 940–947. https://doi.org/10.1016/j.bbadis.2012.11.011.

    Article  CAS  PubMed  Google Scholar 

  5. Xiao, H., H. Li, J.J. Wang, J.S. Zhang, J. Shen, X.B. An, et al. 2018. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal 39: 60–69. https://doi.org/10.1093/eurheartj/ehx261.

    Article  CAS  PubMed  Google Scholar 

  6. Khalil, H., O. Kanisicak, V. Prasad, R.N. Correll, X. Fu, T. Schips, R.J. Vagnozzi, et al. 2017. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. Journal of Clinical Investigation 127: 3770–3783. https://doi.org/10.1172/JCI94753.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Forrester, S.J., G.W. Booz, C.D. Sigmund, T.M. Coffman, T. Kawai, V. Rizzo, et al. 2018. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiological Reviews 98: 1627–1738. https://doi.org/10.1152/physrev.00038.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez, P., Y. Sassi, L. Troncone, L. Benard, K. Ishikawa, R.E. Gordon, et al. 2019. Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. European Heart Journal 40: 967–978. https://doi.org/10.1093/eurheartj/ehy188.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, X., D. Kwak, Z. Lu, X. Xu, J. Fassett, H. Wang, et al. 2014. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling. Hypertension 64: 738–744. https://doi.org/10.1161/HYPERTENSIONAHA.114.03811.

    Article  CAS  PubMed  Google Scholar 

  10. Lin, Y., X. Zhang, W. Xiao, B. Li, J. Wang, L. Jin, et al. 2016. Endoplasmic reticulum stress is involved in DFMO attenuating isoproterenol-induced cardiac hypertrophy in rats. Cellular Physiology And Biochemistry 38: 1553–1562. https://doi.org/10.1159/000443096.

    Article  CAS  PubMed  Google Scholar 

  11. Shih, Y.C., C.L. Chen, Y. Zhang, R.L. Mellor, E.M. Kanter, Y. Fang, et al. 2018. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circulation Research 122: 1052–1068. https://doi.org/10.1161/CIRCRESAHA.117.312130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, Q.Q., Y. Xiao, Y. Yuan, Z.G. Ma, H.H. Liao, and C. Liu. 2017. Mechanisms contributing to cardiac remodelling. Clinical Science (London, England: 1979) 131: 2319–2345. https://doi.org/10.1042/CS20171167.

    Article  CAS  Google Scholar 

  13. Verma, S.K., V.N.S. Garikipati, P. Krishnamurthy, S.M. Schumacher, L.A. Grisanti, M. Cimini, et al. 2017. Interleukin-10 inhibits bone marrow fibroblast progenitor cell-mediated cardiac fibrosis in pressure-overloaded myocardium. Circulation 136: 940–953. https://doi.org/10.1161/CIRCULATIONAHA.117.027889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song, L., L. Wang, F. Li, A. Yukht, M. Qin, H. Ruther, et al. 2017. Bone marrow-derived tenascin-C attenuates cardiac hypertrophy by controlling inflammation. Journal of the American College of Cardiology 70: 1601–1615. https://doi.org/10.1016/j.jacc.2017.07.789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schafer, S., S. Viswanathan, A.A. Widjaja, W.W. Lim, A. Moreno-Moral, D.M. DeLaughter, et al. 2017. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552: 110–115. https://doi.org/10.1038/nature24676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, L., Y.L. Zhang, Q.Y. Lin, Y. Liu, X.M. Guan, X.L. Ma, et al. 2018. CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration. European Heart Journal 39: 1818–1831. https://doi.org/10.1093/eurheartj/ehy085.

    Article  CAS  PubMed  Google Scholar 

  17. Menu, P., A. Mayor, R. Zhou, A. Tardivel, H. Ichijo, K. Mori, et al. 2012. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death & Disease 3: e261. https://doi.org/10.1038/cddis.2011.132.

    Article  CAS  Google Scholar 

  18. Agostini, L., F. Martinon, K. Burns, M.F. Mcdermott, P.N. Hawkins, and J. Tschopp. 2004. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20: 319–325. https://doi.org/10.1016/s1074-7613(04)00046-9.

    Article  CAS  PubMed  Google Scholar 

  19. Bracey, N.A., H.J. Duff, and D.A. Muruve. 2015. Hierarchical regulation of wound healing by NOD-like receptors in cardiovascular disease. Antioxidants & Redox Signaling 22: 1176–1187. https://doi.org/10.1089/ars.2014.6125.

    Article  CAS  Google Scholar 

  20. Bracey, N.A., B. Gershkovich, J. Chun, A. Vilaysane, H.C. Meijndert, J.R. Wright Jr., et al. 2014. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. Journal Biological Chemistry 289: 19571–19584. https://doi.org/10.1074/jbc.M114.550624.

    Article  CAS  Google Scholar 

  21. Zhang, B., Y. Liu, Y.B. Sui, H.Q. Cai, W.X. Liu, M. Zhu, and X.H. Yin. 2015. Cortistatin inhibits NLRP3 inflammasome activation of cardiac fibroblasts during sepsis. Journal of Cardiac Failure 21: 426–433. https://doi.org/10.1016/j.cardfail.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, W., X. Zhang, M. Zhao, X. Zhang, J. Chi, Y. Liu, et al. 2015. Activation in M1 but not M2 macrophages contributes to cardiac remodeling after myocardial infarction in rats: A critical role of the calcium sensing receptor/NRLP3 inflammasome. Cellular Physiology and Biochemistry 35: 2483–2500. https://doi.org/10.1159/000374048.

    Article  CAS  PubMed  Google Scholar 

  23. Nur, B.B., H. Sevtap, K.G.S. Saba, U. Orhan, and D.Y. Emine. 2019. Hypertension-induced cardiac impairment is reversed by the inhibition of endoplasmic reticulum stress. Journal of Pharmacy and Pharmacology 71: 1809–1821. https://doi.org/10.1111/jphp.13169.

    Article  CAS  Google Scholar 

  24. Zhang, Y., W. Chen, and Y. Wang. 2020. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomedicine & Pharmacotherapy 125: 110022. https://doi.org/10.1016/j.biopha.2020.110022.

    Article  CAS  Google Scholar 

  25. Zhang, S.Y., M.J. Xu, and X. Wang. 2018. Adrenomedullin 2/intermedin: A putative drug candidate for treatment of cardiometabolic diseases. British Journal of Pharmacology 175: 1230–1240. https://doi.org/10.1111/bph.13814.

    Article  CAS  PubMed  Google Scholar 

  26. Ni, X., J. Zhang, C. Tang, and Y. Qi. 2014. Intermedin/adrenomedullin2: An autocrine/paracrine factor in vascular homeostasis and disease. Science China-Life Sciences 57: 781–789. https://doi.org/10.1007/s11427-014-4701-7.

    Article  CAS  PubMed  Google Scholar 

  27. Yang, J.H., Y. Cai, X.H. Duan, C.G. Ma, X. Wang, C.S. Tang, et al. 2009. Intermedin1-53 inhibits rat cardiac fibroblast activation induced by angiotensin II. Regulatory Peptides 158: 19–25. https://doi.org/10.1016/j.regpep.2009.05.012.

    Article  CAS  PubMed  Google Scholar 

  28. Lu, W.W., L. Zhao, J.S. Zhang, Y.L. Hou, Y.R. Yu, M.Z. Jia, et al. 2015. Intermedin1-53 protects against cardiac hypertrophy by inhibiting endoplasmic reticulum stress via activating AMP-activated protein kinase. Journal of Hypertension 33 (8): 1676–1687. https://doi.org/10.1097/HJH.0000000000000597.

    Article  CAS  PubMed  Google Scholar 

  29. Teng, X., J. Song, G. Zhang, Y. Cai, F. Yuan, J. Du, et al. 2011. Inhibition of endoplasmic reticulum stress by intermedin(1–53) protects against myocardial injury through a PI3 kinase-Akt signaling pathway. Journal of molecular medicine (Berlin, Germany) 89: 1195–1205. https://doi.org/10.1007/s00109-011-0808-5.

    Article  CAS  Google Scholar 

  30. Chang, J.R., X.H. Duan, B.H. Zhang, X. Teng, Y.B. Zhou, Y. Liu, et al. 2013. Intermedin1–53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway. Experimental biology and medicine (Maywood, NJ) 238: 1136–1146. https://doi.org/10.1177/1535370213502619.

    Article  CAS  Google Scholar 

  31. Li, H., Y. Bian, N. Zhang, J. Guo, C. Wang, W.B. Lau, and C. Xiao. 2013. Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats. Cardiovascular Diabetology 12: 91. https://doi.org/10.1186/1475-2840-12-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, S.M., J. Liu, and C.X. Li. 2014. Intermedin protects against myocardial ischemia-reperfusion injury in hyperlipidemia rats. Genetics and Molecular Research 13: 8309–8319. https://doi.org/10.4238/2014.October.20.7.

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y., H. Zhang, C. Jiang, M. Xu, Y. Pang, J. Feng, et al. 2013. Hyperhomocysteinemia promote insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. Journal of Biological Chemistry 288: 9583–9592. https://doi.org/10.1074/jbc.M112.431627 Epub 2013 Feb 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moilanen, A.M., J. Rysä, E. Mustonen, R. Serpi, J. Aro, H. Tokola, et al. 2011. Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circulation Heart Failure 4: 483–495. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958033.

    Article  CAS  PubMed  Google Scholar 

  35. Serpi, R., A.M. Tolonen, J. Huusko, J. Rysä, O. Tenhunen, S. Ylä-Herttuala, et al. 2011. Vascular endothelial growth factor-B gene transfer prevents angiotensin II-induced diastolic dysfunction via proliferation and capillary dilatation in rats. Cardiovascular Resesrch 89: 204–213. https://doi.org/10.1093/cvr/cvq267.

    Article  CAS  Google Scholar 

  36. Skoumal, R., M. Tóth, R. Serpi, J. Rysä, H. Leskinen, J. Ulvila, et al. 2011. Parthenolide inhibits STAT3 signaling and attenuates angiotensin II-induced left ventricular hypertrophy via modulation of fibroblast activity. Journal of Molecular Cell Cardiology 50: 634–641. https://doi.org/10.1016/j.yjmcc.2011.01.001.

    Article  CAS  Google Scholar 

  37. Chang, J.R., J. Guo, Y. Wang, Y.L. Hou, W.W. Lu, J.S. Zhang, et al. 2016. Intermedin1-53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of α-Klotho. Kidney International 89: 586–600. https://doi.org/10.1016/j.kint.2015.12.029.

    Article  CAS  PubMed  Google Scholar 

  38. Li, T.T., X.Y. Li, L.X. Jia, J. Zhang, W.M. Zhang, Y.L. Li, et al. 2016. Whole Transcriptome analysis of hypertension induced cardiac injury using deep sequencing. Cellular Physiology And Biochemistry 38: 670–682. https://doi.org/10.1159/000438659.

    Article  CAS  PubMed  Google Scholar 

  39. Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim, D.R. Kelley, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocol 7: 562–578. https://doi.org/10.1038/nprot.2012.016.

    Article  CAS  Google Scholar 

  40. Lu, W.W., L.X. Jia, X.Q. Ni, L. Zhao, J.R. Chang, J.S. Zhang, et al. 2016. Intermedin1-53 attenuates abdominal aortic aneurysm by inhibiting oxidative stress. Arteriosclerosis, Thrombosis, and Vascular Biology 36: 2176–2190. https://doi.org/10.1161/ATVBAHA.116.307825.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, J., Y. Lang, L. Guo, Y. Pei, S. Hao, Z. Liang, et al. 2018. MicroRNA-323a-3p promotes pressure overload-induced cardiac fibrosis by targeting TIMP3. Cellular Physiology & Biochemistry 50: 2176–2187. https://doi.org/10.1159/000495059.

    Article  CAS  Google Scholar 

  42. Song, Q., L. Liu, J. Yu, J. Zhang, M. Xu, L. Sun, et al. 2017. Dihydromyricetin attenuated Ang II induced cardiac fibroblasts proliferation related to inhibitory of oxidative stress. European Journal of Pharmacology 807: 159–167. https://doi.org/10.1016/j.ejphar.2017.04.014.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, Q., Q. Wang, Z. Guo, Y. Shang, L. Zhang, and S. Gong. 2014. Nuclear factor-κB as a link between endoplasmic reticulum stress and inflammation during cardiomyocyte hypoxia/reoxygenation. Cell Biology International 38: 881–887. https://doi.org/10.1002/cbin.10272.

    Article  CAS  PubMed  Google Scholar 

  44. Li, F., H. Zhang, L. Yang, H. Yong, Q. Qin, M. Tan, et al. 2018. NLRP3 deficiency accelerates pressure overload-induced cardiac remodeling via increased TLR4 expression. Journal of Molecular Medicine (Berlin, Germany) 96: 1189–1202. https://doi.org/10.1007/s00109-018-1691-0.

    Article  CAS  Google Scholar 

  45. Bujisic, B., and F. Martinon. 2017. IRE1 gives weight to obesity-associated inflammation. Nature Immunology 18: 479–480. https://doi.org/10.1038/ni.3725.

    Article  CAS  PubMed  Google Scholar 

  46. Keestra-Gounder, A.M., M.X. Byndloss, N. Seyffert, B.M. Young, A. Chávez-Arroyo, A.Y. Tsai, et al. 2016. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532: 394–397. https://doi.org/10.1038/nature17631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribeiro, C.M., and B.A. Lubamba. 2017. Role of IRE1α/XBP-1 in cystic fibrosis airway inflammation. International Journal of Molecular Sciences 18: 118. https://doi.org/10.3390/ijms18010118.

    Article  CAS  PubMed Central  Google Scholar 

  48. Yin, J., L. Gu, Y. Wang, N. Fan, Y. Ma, and Y. Peng. 2015. Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes. Mediators of Inflammation 2015: 272313. https://doi.org/10.1155/2015/272313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, H., X. Wang, M. Tong, D. Wu, S. Wu, J. Chen, et al. 2013. Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS ONE 8: e64757. https://doi.org/10.1371/journal.pone.0064757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wei, P., X.J. Yang, Q. Fu, B. Han, L. Ling, J. Bai, et al. 2015. Intermedin attenuates myocardial infarction through activation of autophagy in a rat model of ischemic heart failure via both cAMP and MAPK/ERK1/2 pathways. International Journal of Clinical Experimental Pathology 8: 9836–9844. eCollection 2015.

  51. Ji, T., Y. Han, W. Yang, B. Xu, M. Sun, S. Jiang, et al. 2021. Endoplasmic reticulum stress and NLRP3 inflammasome: Crosstalk in cardiovascular and metabolic disorders. Journal of Cellular Physiology. 41: 272–277. https://doi.org/10.1097/WNO.0000000000001267.

    Article  Google Scholar 

  52. Ke, R., Y. Wang, S. Hong, and L. Xiao. 2020. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3-mediated pyroptosis in diabetic nephropathy. Experimental Cell Research 396: 112293. https://doi.org/10.1016/j.yexcr.2020.112293.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, J.S., Y.L. Hou, W.W. Lu, X.Q. Ni, F. Lin, Y.R. Yu, et al. 2016. Intermedin 1–53 protects against myocardial fibrosis by inhibiting endoplasmic reticulum stress and inflammation induced by homocysteine in apolipoprotein E-deficient mice. Journal of Atherosclerosis Thrombosis 23: 1294–1306. https://doi.org/10.5551/jat.34082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, L.S., Y. Liu, Y. Chen, J.L. Ren, Y.R. Zhang, Y.R. Yu, et al. 2020. Intermedin alleviates pathological cardiac remodeling by upregulating klotho. Pharmacological Research 159: 104926. https://doi.org/10.1016/j.phrs.2020.104926.

    Article  CAS  PubMed  Google Scholar 

  55. Wu, D., L. Shi, P. Li, X. Ni, J. Zhang, Q. Zhu, Y. Qi, et al. 2018. Intermedin 1–53 protects cardiac fibroblasts by inhibiting NLRP3 inflammasome activation during sepsis. Inflammation 41: 505–514. https://doi.org/10.1007/s10753-017-0706-2.

    Article  CAS  PubMed  Google Scholar 

  56. Cartledge, J.E., C. Kane, P. Dias, M. Tesfom, L. Clarke, B. Mckee, et al. 2015. Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovascular Research 105: 260–270. https://doi.org/10.1093/cvr/cvu264.

    Article  CAS  PubMed  Google Scholar 

  57. Engler, A.J., C. Carag-Krieger, C.P. Johnson, M. Raab, H.Y. Tang, D.W. Speicher, et al. 2008. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. Journal of Cell Science 121: 3794–3802. https://doi.org/10.1242/jcs.029678.

    Article  CAS  PubMed  Google Scholar 

  58. Pellman, J., J. Zhang, and F. Sheikh. 2016. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. Journal of Molecular and Cellular Cardiology 94: 22–31. https://doi.org/10.1016/j.yjmcc.2016.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Humeres, C., and N.G. Frangogiannis. 2019. Fibroblasts in the infarcted, remodeling, and failing heart. JACC: Basic to Translational Science 4 (3): 449–467. https://doi.org/10.1016/j.jacbts.2019.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nicin, L., J.U.G. Wagner, G. Luxán, and S. Dimmeler. 2021. Fibroblast-mediated intercellular crosstalk in the healthy and diseased heart. FEBS Letters, online ahead of print. https://doi.org/10.1002/1873-3468.14234.

  61. Flores-Vergara, R., I. Olmedo, P. Aránguiz, J.A. Riquelme, R. Vivar, and Z. Pedrozo. 2021. Communication between cardiomyocytes and fibroblasts during cardiac ischemia/reperfusion and remodeling: Roles of TGF-β, CTGF, the renin angiotensin axis, and non-coding RNA molecules. Frontiers in Physiology 12: 716721. https://doi.org/10.3389/fphys.2021.716721.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fang, J., J. Luan, G. Zhu, C. Qi, Z. Yang, S. Zhao, et al. 2017. Intermedin 1–53 inhibits myocardial fibrosis in rats by down-regulating transforming growth factor-β. Medical Science Monitor. 23: 121–128. https://doi.org/10.12659/msm.898522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, K., X. Deng, L. Gong, X. Chen, S. Wang, H. Chen, et al. 2013. The effect of intermedin on angiotensin II and endothelin-1 induced ventricular myocyte hypertrophy in neonatal rat. Clinical Laboratory 59 (5–6): 589–596. https://doi.org/10.7754/clin.lab.2012.120708.

    Article  CAS  PubMed  Google Scholar 

  64. Yang, J.H., Y.X. Jia, C.S. Pan, J. Zhao, M. Ouyang, J. Yang, et al. 2005. Effects of intermedin1–53 on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochemical and Biophysical Research Communications 327 (3): 713–719. https://doi.org/10.1016/j.bbrc.2004.12.071.

    Article  CAS  PubMed  Google Scholar 

  65. Ren, Y.S., J.H. Yang, J. Zhang, C.S. Pan, J. Yang, J. Zhao, et al. 2006. Intermedin 1–53 in central nervous system elevates arterial blood pressure in rats. Peptides 27 (1): 74–79. https://doi.org/10.1016/j.peptides.2005.06.011.

    Article  CAS  PubMed  Google Scholar 

  66. Ren, J.L., Y.L. Hou, X.Q. Ni, Q. Zhu, Y. Chen, L.S. Zhang, et al. 2020. Intermedin 1–53 ameliorates homocysteine-promoted atherosclerotic calcification by inhibiting endoplasmic reticulum stress. Journal of Cardiovascular Pharmacology and Therapeutics 25 (3): 251–264. https://doi.org/10.1177/1074248419885633.

    Article  CAS  PubMed  Google Scholar 

  67. Yang, X., H. Zhang, Y. Jia, L. Ni, G. Li, L. Xue, et al. 2013. Effects of intermedin1-53 on myocardial fibrosis. Acta Biochimica et Biophysica Sinica (Shanghai) 45 (2): 141–148. https://doi.org/10.1093/abbs/gms093.

    Article  CAS  Google Scholar 

  68. Bracey, N.A., B. Gershkovich, J. Chun, A. Vilaysane, H.C. Meijndert, J.R. Wright Jr., et al. 2014. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. Journal of Biological Chemistry 289 (28): 19571–19584. https://doi.org/10.1074/jbc.M114.550624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kolb, M., P.J. Margetts, D.C. Anthony, F. Pitossi, and J. Gauldie. 2001. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. Journal of Clinical Investigation 107 (12): 1529–1536. https://doi.org/10.1172/JCI12568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yao Song for excellent technical assistance in echocardigraphy. We thank Qiang Shen for technical assistance in H&E and Picrosirius red staining.

Funding

This research was supported by the National Natural Science Foundation of China (nos. 32071113 and 31872790) and the Beijing Natural Science Foundation (nos. 7212059).

Author information

Authors and Affiliations

Authors

Contributions

Yong-Fen Qi, Chao-Shu Tang, and Jin-Sheng Zhang designed the study. Lin-Shuang Zhang, Jin-Sheng Zhang, Yue-Long Hou, Wei-Wei Lu, Xian-Qiang Ni, Fan Lin, and Xiu-Ying Liu performed all the experiments. Lin-Shuang Zhang and Jin-Sheng Zhang also performed the data analysis and drafted the manuscript. Yong-Fen Qi, Xiu-Jie Wang, Yan-Rong Yu, Mo-Zhi Jia, Ling Han, and San-Bao Chai critically revised the manuscript. All the authors reviewed the final manuscript.

Corresponding authors

Correspondence to Ling Han, San-Bao Chai or Yong-Fen Qi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 767 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LS., Zhang, JS., Hou, YL. et al. Intermedin1–53 Inhibits NLRP3 Inflammasome Activation by Targeting IRE1α in Cardiac Fibrosis. Inflammation 45, 1568–1584 (2022). https://doi.org/10.1007/s10753-022-01642-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01642-z

KEY WORDS

Navigation