Skip to main content
Log in

Thermal Conductivity of Small Nickel Particles

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of nanoscale nickel particles due to phonon heat transfer is extrapolated from thin film results calculated using nonequilibrium molecular dynamics (NEMD). The electronic contribution to the thermal conductivity is deduced from the electrical conductivity using the Wiedemann–Franz law. Based on the relaxation time approximation, the electrical conductivity is calculated with the Kubo linear-response formalism. At the average temperature of T=300 K, which is lower than the Debye temperature ΘD=450 K, the results show that in a particle size range of 1.408–10.56 nm, the calculated thermal conductivity decreases almost linearly with decreasing particle size, exhibiting a remarkable reduction compared with the bulk value. The phonon mean free path is estimated, and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonacic-Koutecky V., Fantucci P., Koutecky J. (1991). Chem. Rev. 91:1035

    Article  Google Scholar 

  2. Kurganov V.A., Yu, Zeigarnik A., Maslakova I.V., Ivanov F.P., Martynov S.B. (2000). High Temp. 38:926

    Article  Google Scholar 

  3. Billas I.M.L., Becker J.A., Chatelain A., de Heer W.A. (1994). Science 265:1682

    Article  ADS  Google Scholar 

  4. Aspel S.E., Emmert J.W., Deng J., Bloomfield L.A. (1996). Phys. Rev. Lett. 76:1441

    Article  PubMed  ADS  Google Scholar 

  5. Wu Z.L., Kuo P.K., Wei L.H., Gu S.L., Thomas R.L. (1993). Thin Solid Films 236:191

    Article  ADS  Google Scholar 

  6. Myers H.P. (1990). Introductory Solid State Physics. Taylor and Francis, London

    Google Scholar 

  7. Kumar S., Vradis G.C. (1994). J. Heat Transfer ASME 116:28

    Article  Google Scholar 

  8. Chantrenne P., Raynaud M., Baillis D., Barrat J.L. (2003). Microscale Thermophysical Eng. 7:117

    Article  Google Scholar 

  9. Allen M.P., Tildesley D.J. (1987). Computer Simulation of Liquids. Oxford University Press, New York

    MATH  Google Scholar 

  10. Frenkel D., Berend S. (1996). Understanding Molecular Simulation. Academic Press, San Diego

    MATH  Google Scholar 

  11. Papadia S., Piveteau B., Spanjaard D. (1996). Phys. Rev. B 54:14720

    Article  ADS  Google Scholar 

  12. Harrison W.A. (1966). Pseudopotentials in the Theory of Metals. Benjamin, New York

    Google Scholar 

  13. Erkoç Ş., Güneş B., Güneş P. (2000). Int. J. Mod. Phys. C 11:1013

    Article  ADS  Google Scholar 

  14. Daw M.S., Baskes M.I. (1984). Phys. Rev. B 29:6443

    Article  ADS  Google Scholar 

  15. Johnson R.A. (1988). Phys. Rev. B 37:3924

    Article  ADS  Google Scholar 

  16. Mei J., Davenport J.W., Fernando G.W. (1991). Phys. Rev. B 43:4653

    Article  ADS  Google Scholar 

  17. Cai J., Ye Y.Y. (1996). Phys. Rev. B 54:8398

    Article  ADS  Google Scholar 

  18. Pohlong S.S., Ram P.N. (1998). J. Mater. Res. 13:1919

    Article  ADS  Google Scholar 

  19. Sadigh B., Grimvall G. (1996). Phys. Rev. B 54:15742

    Article  ADS  Google Scholar 

  20. Wang J.Z., Chen M., Guo Z.Y. (2002). Chin. Phys. Lett. 19:324

    Article  ADS  Google Scholar 

  21. Camblong H.E., Levy P.M. (1999). Phys. Rev. B 60:15782

    Article  ADS  Google Scholar 

  22. Blass C., Weinberger P., Szunyogh L., Levy P.M., Sommers C.B. (1999). Phys. Rev. B 60:492

    Article  ADS  Google Scholar 

  23. Wood D.M., Ashcroft N.W. (1982). Phys. Rev. B 25:6255

    Article  ADS  Google Scholar 

  24. Zhang X.G., Butler W.H. (1995). Phys. Rev. B 51:10085

    Article  ADS  Google Scholar 

  25. Bethe H., Salpeter E. (1957). Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin

    MATH  Google Scholar 

  26. Bender C.M., Orzag S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York

    MATH  Google Scholar 

  27. Kittel C. (1996). Introduction to Solid State Physics. Wiley, New York

    Google Scholar 

  28. Ashcroft N.W., Mermin N.D. (1976). Solid State Physics. Harcourt College Publishers, Fort Worth, Texas

    Google Scholar 

  29. Anderson R.J. (1990). J Appl Phys. 67:6914

    Article  ADS  Google Scholar 

  30. Tien C.L., Armaly B.F., Jagannathan P.S., in Thermal Conductivity (Plenum Press, New York, 1969), pp. 13–19.

  31. Tellier C.R., Tosser A.J. (1982). Size Effects of Thin Films. Elsevier, New York

    Google Scholar 

  32. Mott N.F., Jones H. (1958). Theory of Properties of Metals and Alloys. Dover, New York

    Google Scholar 

  33. Kreibig U., Fragstein C.V. (1969). Z. Phys. 224:307

    Article  ADS  Google Scholar 

  34. Shvets V.T., Savenko S.V., Datsko S.V. (2004). Condens. Matter Phys. 7:275

    Google Scholar 

  35. Swartz E.T., Pohl R.O. (1989). Rev. Modern Phys. 61:605

    Article  ADS  Google Scholar 

  36. S. P. Yuan and P. X. Jiang, in Proc. 7 th Asian Thermophys. Props. Conf. (Hefei and Huangshan, Anhui, China, August 23–29, 2004).

  37. Yuan S.P., Jiang P.X. (2005). Prog. Natural Sci. 15:922

    Article  Google Scholar 

  38. Majumdar A. (1993). J. Heat Transfer ASME 115:7

    Article  Google Scholar 

  39. Chen G., Tien C.L. (1993). AIAA J. Thermophys. Heat Transfer 7:311

    Article  ADS  Google Scholar 

  40. Ercolessi F. (1997). A Molecular Dynamics Primer. International School for Advanced Studies (SISSA-ISAS), Trieste, Italy, Spring College in Computational Physics, ICTP

    Google Scholar 

  41. Ziman J.M. (1960). Electrons and Phonons. Oxford University Press, London

    MATH  Google Scholar 

  42. Touloukian Y.S. (1970). Thermophysical Properties of Matter, Vol.1: Thermal Conductivity of Metallic Materials and Alloys. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. X. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, S.P., Jiang, P.X. Thermal Conductivity of Small Nickel Particles. Int J Thermophys 27, 581–595 (2006). https://doi.org/10.1007/s10765-005-0003-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-0003-4

Keywords

Navigation