Skip to main content
Log in

Phonon Transport of Zigzag/Armchair Graphene Superlattice Nanoribbons

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Nanostructured thermoelectric materials are promising for modulating physical properties to achieve high thermoelectric performance. In this paper, thermal transport properties of armchair/zigzag graphene superlattice nanoribbons (A/Z graphene SLNRs) are investigated by performing nonequilibrium molecular dynamics simulations. The target of the research is to realize low thermal conductivity by introducing single-vacancy point defects. Our simulations demonstrate that the thermal conductivity of A/Z graphene SLNRs depends nonmonotonically on periodic length. In addition, introducing single-vacancy point defects into the superlattice nanoribbons could decrease the phonon tunneling in superlattice nanoribbons, so that the thermal conductivity could be reduced further. Furthermore, a monotonic dependence of the thermal conductivity of A/Z graphene SLNRs with length of zigzag part in periodic length is discovered. This phenomenon is explained by performing phonon property analysis. Our simulations deliver a detailed phonon transport in A/Z graphene SLNRs and provide useful guidance on how to engineer the thermal transport properties of A/Z graphene SLNRs for applications of nanoribbon-related devices in thermoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  2. C.A. Marianetti, H.G. Yevick, Failure Mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502 (2010)

    Article  ADS  Google Scholar 

  3. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  ADS  Google Scholar 

  4. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  5. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010)

    Article  ADS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Model. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  8. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lagsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekar, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  ADS  Google Scholar 

  9. C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010)

    Article  Google Scholar 

  10. J.S. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  Google Scholar 

  11. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W.Z. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    Article  ADS  Google Scholar 

  12. F. Hao, D.N. Fang, Z.P. Xu, Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 99, 041901 (2011)

    Article  ADS  Google Scholar 

  13. J.E. Rossi, C.D. Cress, S.M. Goodman, N.D. Cox, I. Puchades, A.R. Bucossi, A. Merrill, B.J. Landi, Enhanced electrical transport in carbon nanotube thin films through defect modulation. J. Phys. Chem. C 120, 15488–15495 (2016)

    Article  Google Scholar 

  14. Y.F. Gao, Y. Jing, J. Liu, X. Li, Q. Meng, Tunable thermal transport properties of graphene by sing-vacancy point defect. Appl. Therm. Eng. 113, 1419–1425 (2017)

    Article  Google Scholar 

  15. Y.F. Gao, X.L. Zhang, Y.G. Zhou, M. Hu, Giant reduction in thermal conductivity of extended Type-I silicon clathrates and prominent thermal effect of 6d guest wyckoff positions. J. Mater. Chem. C 5, 10578–10588 (2017)

    Article  Google Scholar 

  16. H. Eslami, L. Mohammadzadeh, N. Mehdipour, Reverse nonequilibrium molecular dynamics simulation of thermal conductivity in nanoconfined polyamide-6,6. J. Chem. Phys. 135, 064703 (2011)

    Article  ADS  Google Scholar 

  17. H. Eslami, L. Mohammadzadeh, N. Mehdipour, Anisotropic heat transport in nanoconfined polyamide-6,6 oligomers: atomistic reverse nonequilibrium molecular dynamics simulation. J. Chem. Phys. 136, 104901 (2012)

    Article  ADS  Google Scholar 

  18. L.J. Lauhon, M.S. Gudiksen, C.L. Wang, C.M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002)

    Article  ADS  Google Scholar 

  19. M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos, Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett. 11, 618–623 (2011)

    Article  ADS  Google Scholar 

  20. M. Hu, X. Zhang, K.P. Giapis, D. Poulikakos, Thermal conductivity reduction in core-shell nanowires. Phys. Rev. B 84, 085442 (2011)

    Article  ADS  Google Scholar 

  21. D. Li, Y. Wu, R. Fan, P. Yang, A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186–3188 (2003)

    Article  ADS  Google Scholar 

  22. C.K. Liu, C.K. Yu, H.C. Chien, S.L. Kuo, C.Y. Hsu, M.J. Dai, G.L. Luo, S.C. Huang, M.J. Huang, Thermal conductivity of Si/SiGe superlattice films. J. Appl. Phys. 104, 144301 (2008)

    Google Scholar 

  23. M. Hu, D. Poulikakos, Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487–5494 (2012)

    Article  ADS  Google Scholar 

  24. G. Wu, Q. Meng, Y. Jing, Computational design for interconnection of graphene nanoribbons. Chem. Phys. Lett. 531, 119–125 (2012)

    Article  ADS  Google Scholar 

  25. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002)

    Article  ADS  Google Scholar 

  26. L. Lindsay, D.A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Article  ADS  Google Scholar 

  27. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  28. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  29. F.J. Muller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997)

    Article  ADS  Google Scholar 

  30. R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000)

    Article  ADS  Google Scholar 

  31. M.V. Simkin, G.D. Mahan, Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000)

    Article  ADS  Google Scholar 

  32. Y.F. Gao, W.B. Bao, Q.Y. Meng, Y. Jing, X.X. Song, The thermal transport properties of single-crystalline nanowires covered with amorphous shell: a molecular dynamics study. J. Non-Cryst. Solids 387, 132–138 (2014)

    Article  ADS  Google Scholar 

  33. X.L. Zhang, Y.F. Gao, Y.L. Chen, M. Hu, Robustly engineering thermal conductivity of bilayer graphene by interlayer bonding. Sci. Rep. 6, 22011 (2016)

    Article  ADS  Google Scholar 

  34. Y. Wang, C. Liebig, X. Xu, R. Venkatasubramanian, Appl. Phys. Lett. 97, 083103 (2010)

    Article  ADS  Google Scholar 

  35. P.G. Murphy, J.E. Moore, Phys. Rev. B 76, 155313 (2007)

    Article  ADS  Google Scholar 

  36. X. Zhang, M. Hu, D. Tang, Thermal rectification at silicon/horizontally aligned carbon nanotube interfaces. J. Appl. Phys. 113, 194307 (2013)

    Article  ADS  Google Scholar 

  37. M. Hu, Y. Jing, X. Zhang, Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys. Rev. B 91, 155408 (2015)

    Article  ADS  Google Scholar 

  38. Y. Jing, M. Hu, Y. Gao, L. Guo, Y. Sun, On the origin of abnormal phonon transport of graphyne. Int. J. Heat Mass Tran. 85, 880–889 (2015)

    Article  Google Scholar 

  39. Y. Jing, M. Hu, L. Guo, Thermal conductivity of hybrid graphene/silicon heterostructures. J. Appl. Phys. 114, 153518 (2013)

    Article  ADS  Google Scholar 

  40. M. Hu, X. Zhang, D. Poulikakos, Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013)

    Article  ADS  Google Scholar 

  41. L. Lindsay, D.A. Broido, N. Mingo, Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF of China under Grants Nos. 11304059, 11602149, the NSF of Heilongjiang Province of China under Grants No. QC2015001, and the International Postdoctoral Exchange Fellowship Program No. 20140016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhang Jing or Yufei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, Y., Jing, Y. et al. Phonon Transport of Zigzag/Armchair Graphene Superlattice Nanoribbons. Int J Thermophys 39, 125 (2018). https://doi.org/10.1007/s10765-018-2448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2448-2

Keywords

Navigation