Skip to main content
Log in

Systematization of the Critical Parameters of Substances due to Their Connection with Heat of Evaporation and Boyle Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We show that a variety of the critical parameters of substances can be systematized by relating them to the corresponding Boyle values and heat of vaporization under normal conditions. We have found new relationship for the critical parameters of substances obtained by processing the NIST database and other various sources. According to new relationship, the sum of the ratios of the critical and Boyle temperatures and the critical temperature to the heat of vaporization practically remains constant. The previous one (Apfelbaum and Vorob’ev in J Phys Chem B 113:3521, 2009) states that the sum of the critical temperature and density reduced to the corresponding Boyle values is also constant. Check for 70 substances from the NIST database and calculations for Mie m-6 potential confirmed these regularities within few percent accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley-Interscience, New York, 1977)

    MATH  Google Scholar 

  2. G.A. Martynov, Fundamental Theory of Liquids (Adam Hilger, New York, 1992)

    Google Scholar 

  3. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 113, 3521 (2009)

    Google Scholar 

  4. E.M. Apfelbaum, V.S. Vorob’ev, J. Chem. Phys. 130, 214111 (2009)

    ADS  Google Scholar 

  5. D. Ben-Amotz, D.R. Herschbach, Isr. J. Chem. 30, 59 (1990)

    Google Scholar 

  6. M.C. Kutney, M.T. Reagan, K.A. Smith, J.W. Tester, D.R. Herschbach, J. Phys. Chem. B 104, 9513 (2000)

    Google Scholar 

  7. M.E. Dritz, Svoistva Elementov. Spravochnik (The Properties of Elements. Reference Book) (Metallurgy, Moscow, 1988). [in Russian]

    Google Scholar 

  8. Y. Zhang, J.R.G. Evans, S. Yang, J. Chem. Eng. Data 56, 328 (2011)

    Google Scholar 

  9. E. W. Lemmon, M. O. McLinden, D. G. Friend, NIST standard reference database #69. In NIST chemistry WebBook, by P. J. Linstrom, W. G. Mallard, Eds. http://webbook.nist.gov, 2004; see also http://webbook.nist.gov/chemistry/fluid/

  10. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 119, 11825 (2015)

    Google Scholar 

  11. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 120, 4828 (2016)

    Google Scholar 

  12. E.M. Apfelbaum, V.S. Vorob’ev, J. Mol. Liq. 235, 149 (2017)

    Google Scholar 

  13. E.M. Apfelbaum, J. Mol. Liq. 263, 237 (2018)

    Google Scholar 

  14. V.A. Rabinovich, A.A. Vasserman, V.I. Nedostup, Thermophysical Properties of Neon, Argon, Krypton, and Xenon (Hemispere, Berlin, 1988)

    Google Scholar 

  15. S. Jungst, B. Knuth, F. Hensel, Phys. Rev. Lett. 55, 2160 (1985)

    ADS  Google Scholar 

  16. V.F. Kozhevnokov, Sov. Phys. JETP 70, 298 (1990)

    Google Scholar 

  17. W. Goltzlaff, G. Schonherr, F. Henzel, Z. Phys. Chem. 156, 219 (1988)

    Google Scholar 

  18. I.K. Kikoin, P. Senchenkov, Fiz. Met. Metalloved. 24, 843 (1967). [in Russian]

    Google Scholar 

  19. P.I. Bystrov, D.N. Kagan, G.A. Krechetova, E.E. Shpilrain, Liquid Metal Coolants for Heat Pipes and Power Plants (Hemisphere, New York, 1990)

    Google Scholar 

  20. F. Hensel, G.F. Hohl, D. Schaumloffel, W.S. Pilgrim, Z. Phys. Chem. 214, 823 (2000)

    Google Scholar 

  21. M. Leitner, W. Schroer, G. Pottlacher, Int. J. Thermophys. 39, 124 (2018)

    ADS  Google Scholar 

  22. R. Fisher, R.W. Schmutzler, F. Hensel, J. Non-Crystal. Solids 35–36, 1295 (1980)

    ADS  Google Scholar 

  23. S. Hosokawa, T. Kuboi, K. Tamura, Ber. Bunsenges. Phys. Chem. 101, 120 (1997)

    Google Scholar 

  24. D.V. Minakov, M.A. Paramonov, P.R. Levashov, Phys. Rev. B 97, 024205 (2018)

    ADS  Google Scholar 

  25. E.M. Apfelbaum, J. Phys. Chem. B 116, 14660 (2012)

    Google Scholar 

  26. W.A. Harrison, Pseudopotentials in the Theory of Metals (W. A. Benjamin Inc., New York, 1966)

    Google Scholar 

  27. J.M. Merritt, V.E. Bondybey, M.C. Heaven, Science 324, 1548 (2009)

    ADS  Google Scholar 

  28. C. Desgranges, J. Delhommelle, J. Phys. Chem. B 120, 5255 (2016)

    Google Scholar 

  29. C. Desgranges, P.W. Anderson, J. Delhommelle, J. Phys.: Condens. Matter. 29, 045401 (2017)

    ADS  Google Scholar 

  30. J. Nichele, L.D. Alves, I. Borges Jr., High Temp. High Press. 43, 385 (2014)

    Google Scholar 

  31. J. Nichele, I. Borges, A.B. Oliveira, L.S. Alves, J. Supercrit. Fluids 114, 46 (2016)

    Google Scholar 

  32. J. Nichele, A.B. Oliveira, L.S. Alves, I. Borges, J. Mol. Liq. 237, 65 (2017)

    Google Scholar 

  33. C. Desgranges, A. Margo, J. Delhommelle, Chem. Phys. Lett. 658, 37 (2016)

    ADS  Google Scholar 

  34. J.J. Potoff, D.A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009)

    Google Scholar 

  35. R.A. Messerly, M.C. Anderson, S.M. Razavi, J.R. Elliott, Fluid Phase Equil. 483, 101 (2019)

    Google Scholar 

  36. J.J. Potoff, G. Kamath, J. Chem. Eng. Data 59, 3144 (2014)

    Google Scholar 

  37. F. Del Rio, I.A. Mclure, J. Chavez, J.E. Ramos, E. Avalos, Mol. Phys. 104, 3757 (2006)

    ADS  Google Scholar 

  38. P. Orea, Y. Reyes-Mercado, Y. Duda, Phys. Lett. A 372, 7024 (2008)

    ADS  Google Scholar 

  39. C. Avendaño, T. Lafitte, C.S. Adjiman, A. Galindo, E.A. Müller, G. Jackson, J. Phys. Chem. B 117, 2717 (2013)

    Google Scholar 

  40. C. Waibel, J. Gross, J. Chem. Theory Comput. 15, 2561 (2019)

    Google Scholar 

  41. H. Okumura, F. Yonezava, J. Chem. Phys. 113, 9162 (2000)

    ADS  Google Scholar 

  42. J.M.G. Sousa, A.L. Ferreira, M.A. Barroso, J. Chem. Phys. 136, 174502 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Apfelbaum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apfelbaum, E.M., Vorob’ev, V.S. Systematization of the Critical Parameters of Substances due to Their Connection with Heat of Evaporation and Boyle Temperature. Int J Thermophys 41, 8 (2020). https://doi.org/10.1007/s10765-019-2581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2581-6

Keywords

Navigation