Skip to main content
Log in

Energies Spectra and Thermodynamic Properties of Hyperbolic Pöschl–Teller Potential (HPTP) Model

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We solved the Dirac equation using modified factorization method with hyperbolic Pöschl–Teller potential model. Relativistic and non-relativistic ro-vibrational energy spectra were obtained and numerical solutions for four diatomic molecules \(\left( {{\text{HCl}},\;{\text{H}}_{2} ,\;{\text{CO}}\;{\text{and}}\;{\text{LiH}}} \right)\) obtained also. The eigenfunction for this potential has been obtained in terms of hypergeometric function. The energy variations with different potential parameters and quantum numbers of the hyperbolic Pöschl–Teller potential are also plotted. In addition, we evaluate the vibrational partition function and other thermodynamic properties such as vibrational internal energy, vibrational free energy, vibrational entropy and vibrational specific heat capacity, in terms of temperature and upper bound vibration quantum number. Our results are consistent with those found in the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Pöschl, E.Z. Teller, Physics 83, 143 (1933)

    Article  Google Scholar 

  2. S.M. Ikhdair, B.J. Falaye, Chem. Phys. 421, 84 (2013)

    Article  Google Scholar 

  3. C.S. Jia, P. Guo, Y.F. Diao, L.Z. Yi, X.J. Xie, Euro. Phys. J. A 34, 41 (2007)

    Article  ADS  Google Scholar 

  4. X.Y. Liu, G.F. Wei, Z.W. Cao, H.G. Bai, Int. J. Theor. Phys. 49, 343 (2010)

    Article  Google Scholar 

  5. C.S. Jia, T. Chen, L. Cui, Phys. Lett. A 373, 1621 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.Y. Chen, Y. You, F.L. Lu, S.H. Dong, Phys. Lett. A 377, 1070 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Wei, S.H. Dong, Phys. Lett. A 373, 2428 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.H. Dong, W. Qiang, J. Garcia-Revalo, Int. J. Mod. Phys. A 23, 1537 (2008)

    Article  ADS  Google Scholar 

  9. C.C. Yuan, L.F. Lin, Y. Yuan, Chin. Phys. B 21, 030302 (2012)

    Article  Google Scholar 

  10. B.J. Falaye, Can. J. Phys. 90, 1259 (2012)

    Article  ADS  Google Scholar 

  11. A.N. Ikot, H.P. Obong, I.O. Owate, M.C. Onyeaju, H. Hassanabadi, Adv. High Energy Phys. (2015). https://doi.org/10.1155/2015/632603

    Article  Google Scholar 

  12. U.S. Okorie, A.N. Ikot, C.O. Edet, I.O. Akpan, R. Sever, G.J. Rampho, J. Phys. Commun. 3, 095015 (2019)

    Article  Google Scholar 

  13. G.H. Sun, M.A. Aoki, S.H. Dong, Chin. Phys. B 22, 050302 (2013)

    Article  Google Scholar 

  14. G.F. Wei, S.H. Dong, Can. J. Phys. 89, 1225 (2011)

    Article  ADS  Google Scholar 

  15. Z.W. Shui, C.S. Jia, Eur. Phys. J. Plus 132, 292 (2017)

    Article  Google Scholar 

  16. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988)

    Book  MATH  Google Scholar 

  17. I.A. Assi, A.N. Ikot, E.O. Chukwuocha, Adv. High Energy Phys. (2018). https://doi.org/10.1155/2018/4536543

    Article  Google Scholar 

  18. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)

    Article  ADS  Google Scholar 

  19. O. Bayrak, I. Boztosun, H. Ciftci, Int. J. Quantum Chem. 107, 540 (2007)

    Article  ADS  Google Scholar 

  20. O. Bayrak, I. Boztosun, Phys. Scr. 76, 92 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Y.U. Sun, G.D. Zhang, C.S. Jia, Chem. Phys. Lett. 636, 197 (2015)

    Article  ADS  Google Scholar 

  22. Z.W. Shui, C.S. Jia, Eur. Phys. J. Plus 131, 215 (2016)

    Article  Google Scholar 

  23. C.S. Jia, Y. Jia, Eur. Phys. J. D 71, 3 (2017)

    Article  ADS  Google Scholar 

  24. B.J. Falaye, K.J. Oyewumi, S.M. Ikhdair, M. Hamzavi, Phys. Scr. 89, 115204 (2014)

    Article  ADS  Google Scholar 

  25. K.J. Oyewumi, B.J. Falaye, C.A. Onate, O.J. Oluwadare, W.A. Yahya, Mol. Phys. 112, 127 (2014)

    Article  ADS  Google Scholar 

  26. S.H. Dong, M. Lozada-Cassou, J. Yu, F.J. Angeles, A.L. Rivera, Int. J. Quant. Chem. 107, 366 (2007)

    Article  ADS  Google Scholar 

  27. U.S. Okorie, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, J. Mol. Mod. 24, 289 (2018)

    Article  Google Scholar 

  28. S.H. Dong, M. Cruz-Irisson, J. Math. Chem. 50, 881 (2012)

    Article  MathSciNet  Google Scholar 

  29. A.N. Ikot, B.C. Lutfuoglu, M.I. Ngweke, M.E. Udoh, S. Zare, H. Hassanabadi, Euro. Phys. J. Plus. 131, 419 (2016)

    Article  Google Scholar 

  30. X.Q. Song, C.W. Zhang, C.S. Jia, Chem. Phys. Lett. 673, 50 (2017)

    Article  ADS  Google Scholar 

  31. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    Article  ADS  Google Scholar 

  32. A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eur. Phys. J. Plus 134, 386 (2019)

    Article  Google Scholar 

  33. C.A. Onate, M.C. Onyeaju, U.S. Okorie, A.N. Ikot, Results Phys. 16, 102959 (2020)

    Article  Google Scholar 

  34. C.O. Edet, U.S. Okorie, G. Osobonye, U.S. Okorie, G.J. Rampho, R. Server, J. Math. Chem. (2020). https://doi.org/10.1007/s10910-020-01107-4

    Article  Google Scholar 

  35. C.S. Jia, L.H. Zhang, J.Y. Liu, Eur. Phys. J. Plus 131, 2 (2016)

    Article  Google Scholar 

  36. C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, X.L. Peng, Phys. Lett. A 379, 137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. A. De Souza Dutra, G. Chen, Phys. Lett. A 349, 297 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Sun, Phys. Lett. A 374, 116 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. A.S. de Castro, Phys. Lett. A 338, 81 (2005)

    Article  ADS  Google Scholar 

  40. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)

    Article  ADS  Google Scholar 

  41. K. Chabi, A. Boumali, Rev. Mex. De Fis. 66, 110 (2020)

    Article  Google Scholar 

  42. A.K. Roy, Int. J. Quant. Chem. 114, 383 (2014)

    Article  Google Scholar 

  43. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, J. Theor. Appl. Phys. 9, 151 (2015)

    Article  ADS  Google Scholar 

  44. C.S. Jia, L.H. Zhang, X.L. Peng, Int. J. Quant. Chem. 117, e25383 (2017)

    Article  Google Scholar 

  45. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018)

    Article  Google Scholar 

  46. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 122 (2018)

    Article  Google Scholar 

  47. C.S. Jia, R. Zeng, X.L. Peng, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 1 (2018)

    Article  Google Scholar 

  48. X.Y. Chen, J. Li, C.S. Jia, ACS Omega 4, 16121 (2019)

    Article  Google Scholar 

  49. J. Wang, C.S. Jia, C.J. Li, X.L. Peng, L.H. Zhang, J.Y. Liu, ACS Omega 4, 19193 (2019)

    Article  Google Scholar 

  50. C.S. Jia, Y.T. Wang, L.S. Wei, C.W. Wang, X.L. Peng, L.H. Zhang, ACS Omega 4, 20000 (2019)

    Article  Google Scholar 

  51. M. Servatkhah, R. Khordad, Int. J. Thermophys. 41, 37 (2020)

    Article  ADS  Google Scholar 

  52. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57 (2018)

    Article  ADS  Google Scholar 

  53. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, J.J. Guo, L.D. Tang, Chem. Eng. Sci. 202, 70 (2019)

    Article  Google Scholar 

  54. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019)

    Article  ADS  Google Scholar 

  55. C.S. Jia, X.T. You, J.Y. Liu, L.H. Zhang, X.L. Peng, Y.T. Wang, L.S. Wei, Chem. Phys. Lett. 717, 16 (2019)

    Article  ADS  Google Scholar 

  56. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 726, 83 (2019)

    Article  ADS  Google Scholar 

  57. A. Ghanbari, R. Khordad, Chem. Phys. 534, 110732 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Okorie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okorie, U.S., Ikot, A.N., Chukwuocha, E.O. et al. Energies Spectra and Thermodynamic Properties of Hyperbolic Pöschl–Teller Potential (HPTP) Model. Int J Thermophys 41, 91 (2020). https://doi.org/10.1007/s10765-020-02671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02671-2

Keywords

Navigation