Skip to main content
Log in

The Geometry of Noncommutative Space-Time

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Stabilization, by deformation, of the Poincaré-Heisenberg algebra requires both the introduction of a fundamental lentgh and the noncommutativity of translations which is associated to the gravitational field. The noncommutative geometry structure that follows from the deformed algebra is studied both for the non-commutative tangent space and the full space with gravity. The contact points of this approach with the work of David Finkelstein are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\overline {p}^{\mu }, \overline {\Im } \) denote the tangent space (R) limits of the operators, not be confused with the physical p μ,I operators. According to the deformation-stability principle they are stable physical operators only when R is finite, that is, when gravity is turned on.

  2. 2 Notice that additional components are not necessarily required for spinors because the Clifford algebras C(3,2) or C(4,1) both have four-dimensional representations.

References

  1. Finkelstein, D.R.: General quantization. Int. J. Theor. Phys. 45, 1399–1427 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Segal, I.E.: A class of operator algebras which are determined by groups. Duke Math. J. 18, 221–265 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  3. Finkelstein, D.R., Shiri-Garakani, M.: Finite quantum dynamics. Int. J. Theor. Phys. 50, 1731–1751 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vilela Mendes, R.: The stability of physical theories principle. In: Licata, I. (ed.) Beyond Peaceful Coexistence, The Emergence of Space, Time and Quantum, pp. 153–200. Imperial College Press, London (2016)

    Google Scholar 

  5. Vilela Mendes, R.: Deformations, stable theories and fundamental constants. J. Phys. A: Math. Gen. 27, 8091–8104 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Vilela Mendes, R.: Quantum mechanics and non-commutative space-time. Phys. Lett. A 210, 232–240 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Vilela Mendes, R.: Geometry, stochastic calculus and quantum fields in a non-commutative space-time. J. Math. Phys. 41, 156–186 (2000)

    Article  ADS  MATH  Google Scholar 

  8. Carlen, E., Vilela Mendes, R.: Non-commutative space-time and the uncertainty principle. Phys. Lett. A 290, 109–114 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Vilela Mendes, R.: Stochastic calculus and processes in non-commutative space-time. Prog. Probab. 52, 205–217 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Vilela Mendes, R.: Some consequences of a noncommutative space-time structure. Eur. Phys. J. C 42, 445–452 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Vilela Mendes, R.: The deformation-stability fundamental length and deviations from c. Phys. Lett. A 376, 1823–1826 (2012)

    Article  ADS  Google Scholar 

  12. Vilela Mendes, R.: A laboratory scale fundamental time? Eur. Phys. J. C 72, 2239 (2012)

    Article  ADS  Google Scholar 

  13. Finkelstein, D.R.: Quantum set theory and Clifford algebra. Int. J. Theor. Phys. 21, 489–503 (1982)

    Article  MATH  Google Scholar 

  14. Baugh, J., Finkelstein, D.R., Galiautdinov, A., Saller, H.: Clifford algebra as quantum language. J. Math. Phys. 42, 1489–1500 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Galiautdinov, A.A., Finkelstein, D.R.: Chronon corrections to the Dirac equation. J. Math. Phys. 43, 4741–4752 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Baugh, J., Finkelstein, D.R., Galiautdinov, A., Shiri-Garakani, M.: Transquantum dynamics. Found. Phys. 33, 12671275 (2003)

    Article  MathSciNet  Google Scholar 

  17. Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry of matrix algebras. J. Math. Phys. 31, 316–322 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Connes, A.: Non-commutative Geometry. Academic, New York (1994)

    MATH  Google Scholar 

  19. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. American Math. Society Colloquium Publications (2007)

  20. Vilela Mendes, R.: An extended Dirac equation in noncommutative space-time. Mod. Phys. Lett. A 31, 1650089 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Finkelstein, D.R.: Homotopy approach to quantum gravity. Int. J. Theor. Phys. 47, 534–552 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Finkelstein, D.R.: arXiv:1108.1495, arXiv:1403.3725, arXiv:1403.3726

  23. Vilenkin, N. Ja., Klimik, A.U.: Representation of Lie Groups and Special Functions, vol. 2. Kluwer, Dordrecht (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vilela Mendes.

Appendix: Irreducible Representations of the Space-Time Algebra

Appendix: Irreducible Representations of the Space-Time Algebra

For S O(3,2)(𝜖 4=+1) a way to characterize the irreducible representations of this groups is to consider its action on functions on a V 3,2 cone, with coordinates

$$\begin{array}{@{}rcl@{}} y_{1} & = & e^{s}\cos \varphi_{2} \\ y_{2} & = & e^{s}\sin \varphi_{2}\cos \varphi_{1} \\ y_{3} & = & e^{s}\sin\varphi_{2}\sin \varphi_{1} \\ y_{4} & = & e^{s}\sin \theta_{1} \\ y_{0} & = & e^{s}\cos \theta_{1} \end{array} $$
(34)

Then, on this cone, consider a space S σ,ε of functions satisfying the homogeneity conditions [23]

$$ f\left( ax\right) =\left\vert a\right\vert^{\sigma} sign^{\varepsilon} af\left( x\right) $$
(35)

\(\sigma \in \mathbb {R}\) and ε={0,1}. In M σ,ε the group operators act as follows

$$ T\left( g\right) f\left( x\right) =f\left( g^{-1}x\right) $$
(36)

Because of (35) the functions are uniquely characterized by their values in the (s=0)Γ1 contour. This contour is topologically S 2×S 1. The spaces of homogeneous functions on this contour will be denoted \(S^{{\Gamma }_{1}}\). Denote by g i j (𝜃) a rotation in the plane ij and by \(g_{ij}^{\prime } \left (t\right ) \) a hyperbolic rotations in the plane ij.

Given \(f\in S^{{\Gamma }_{1}}\), using (35) and (36) one obtains for an hyperbolic rotation in the 1, 4 plane

$$\begin{array}{@{}rcl@{}} T^{\sigma} \left( g_{14}^{\prime} \left( t\right) \right) f\left( \varphi_{1},\varphi_{2},\theta_{1}\right) &=&\left\vert a\right\vert^{\sigma /2}f\left( \varphi_{1},\varphi_{2}^{\prime} ,\theta_{1}^{\prime} \right) \\ \left\vert a\right\vert &=&\left\{ \sin^{2}\theta_{1}+\left( \cos \theta_{1}\cosh t-\cos \varphi_{2}\sinh t\right)^{2}\right\}^{1/2} \\ \cos \varphi_{2}^{\prime} &=&\frac{\cos \varphi_{2}\cosh t-\cos \theta_{1}\sinh t}{\left\vert a\right\vert} \\ \cos \theta_{1}^{\prime} &=&\frac{\cos \theta_{1}\cosh t-\cos \varphi_{2}\sinh t}{\left\vert a\right\vert} \end{array} $$
(37)

Similar expressions are obtained for the other elementary operations. From these one obtains, as infinitesimal generators, a representation for the generators of the algebra {X μ ,M μ ν } as operators in \(S^{{\Gamma }_{1}}\)

$$\begin{array}{@{}rcl@{}} iX_{1} &=&iM_{14}=\sigma \cos \theta_{1}\cos \varphi_{2}-\sin \theta_{1}\cos \varphi_{2}\frac{\partial} {\partial\theta_{1}}-\cos \theta_{1}\sin \varphi_{2}\frac{\partial} {\partial \varphi_{2}}\\ iX_{2} &=& iM_{24}=\sigma\cos \theta_{1}\sin \varphi_{2}\cos \varphi_{1}-\sin \theta_{1}\sin \varphi_{2}\cos \varphi_{1}\frac{\partial}{\partial \theta_{1}}\\ &&+\cos \theta_{1}\cos \varphi_{2}\cos \varphi_{1}\frac{\partial}{\partial \varphi_{2}}-\frac{\cos \theta_{1}\sin \varphi_{1}}{\sin \varphi_{2}}\frac{\partial} {\partial \varphi_{1}}\\ iX_{3} &=& iM_{34}=\sigma \cos \theta_{1}\sin \varphi_{2}\sin \varphi_{1}-\sin \theta_{1}\sin \varphi_{2}\sin \varphi_{1}\frac{\partial}{\partial \theta_{1}}\\ && + \cos \theta_{1}\cos \varphi_{2}\sin \varphi_{1}\frac{\partial}{\partial \varphi_{2}}+\frac{\cos \theta_{1}\cos \varphi_{1}}{\sin \varphi_{2}} \frac{\partial}{\partial \varphi_{1}}\\ iX_{0} &=& iM_{04}=\frac{\partial}{\partial \theta_{1}} \end{array} $$
$$\begin{array}{@{}rcl@{}} iM_{12} &=& -\cos \varphi_{1}\frac{\partial}{\partial \varphi_{2}}+\frac{\cos \varphi_{2}\sin \varphi_{1}}{\sin \varphi_{2}}\frac{\partial}{\partial \varphi_{1}}\\ iM_{13} &=& -\sin \varphi_{1}\frac{\partial} {\partial \varphi_{2}}-\frac{\cos \varphi_{2}\cos \varphi_{1}}{\sin \varphi_{2}}\frac{\partial}{\partial \varphi_{1}}\\ iM_{23} &=& -\frac{\partial}{\partial \varphi_{1}} \\ iM_{10} &=& \sigma \sin \theta_{1}\cos \varphi_{2}+\cos \theta_{1}\cos\varphi_{2}\frac{\partial}{\partial \theta_{1}}-\sin \theta_{1}\sin \varphi_{2}\frac{\partial}{\partial \varphi_{2}}\\ iM_{20} &=&\sigma \sin \theta_{1}\sin \varphi_{2}\cos \varphi_{1}+\cos \theta_{1}\sin \varphi_{2}\cos\varphi_{1}\frac{\partial}{\partial \theta_{1}}\\ &&+\sin \theta_{1}\cos \varphi_{2}\cos \varphi_{1}\frac{\partial}{\partial \varphi_{2}} + \frac{\sin \theta_{1}\sin \varphi_{1}}{\sin \varphi_{2}}\frac{\partial}{\partial \varphi_{1}}\\ iM_{30} &=&\sigma \sin \theta_{1}\sin \varphi_{2}\sin \varphi_{1}+\cos \theta_{1}\sin \varphi_{2}\sin \varphi_{1}\frac{\partial}{\partial \theta_{1}}\\ &&+\sin \theta_{1}\cos \varphi_{2}\sin \varphi_{1}\frac{\partial}{\partial \varphi_{2}}+\frac{\sin \theta_{1}\cos \varphi_{1}}{\sin \varphi_{2}}\frac{\partial}{\partial \varphi_{1}} \end{array} $$
(38)

These representations are irreducible for non-integer σ. There are also conditions for unitary of the representations, but this is not so important because only the M μ ν (μ,ν=0,1,2,3) are generators of symmetry operations.

A similar construction is possible for S O(4,1)(𝜖 4=−1) with functions on a V 4,1(𝜖 5=−1) cone, with coordinates

$$\begin{array}{@{}rcl@{}} y_{1} & = & e^{s}\cos \varphi_{3} \\ y_{2} & = & e^{s}\sin \varphi_{3}\cos \varphi_{2} \\ y_{3} & = & e^{s}\sin \varphi_{3}\sin \varphi_{2}\cos \varphi_{1} \\ y_{4} & = & e^{s}\sin \varphi_{3}\sin \varphi_{2}\sin \varphi_{1}\\ y_{0} & = & e^{s} \end{array} $$
(39)

the contour Γ2(s=0) in this case being topologically S 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, R.V. The Geometry of Noncommutative Space-Time. Int J Theor Phys 56, 259–269 (2017). https://doi.org/10.1007/s10773-016-3166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3166-9

Keywords

Navigation