Skip to main content
Log in

On the Deformed Oscillator and the Deformed Derivative Associated with the Tsallis q-exponential

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Tsallis q-exponential function \(e_{q}(x) = (1+(1-q)x)^{\frac {1}{1-q}}\) is found to be associated with the deformed oscillator defined by the relations \(\left [N,a^{\dagger }\right ] = a^{\dagger }\), [N,a] = −a, and \(\left [a,a^{\dagger }\right ] = \phi _{T}(N+1)-\phi _{T}(N)\), with ϕT(N) = N/(1 + (q − 1)(N − 1)). In a Bargmann-like representation of this deformed oscillator the annihilation operator a corresponds to a deformed derivative with the Tsallis q-exponential functions as its eigenfunctions, and the Tsallis q-exponential functions become the coherent states of the deformed oscillator. When q = 2 these deformed oscillator coherent states correspond to states known variously as phase coherent states, harmonious states, or pseudothermal states. Further, when q = 1 this deformed oscillator is a canonical boson oscillator, when 1 < q < 2 its ground state energy is same as for a boson and the excited energy levels lie in a band of finite width, and when q→2 it becomes a two-level system with a nondegenerate ground state and an infinitely degenerate excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sternheimer, D.: Deformation theory and physics model building. In: Topics in Mathematical Physics, General Relativity, and Cosmology in Honor of Jerzy Plebanskí, Eds. H. García-Compeán, B. Mielnik, M. Montesnos, and M. Przanowski, 469–487, (World Scientific). https://doi.org/10.1142/9789812772732_0039 (2006)

  2. Curtright, T., Fairlie, D., Zachos, C. (eds.): Quantum Groups: Proceedings of the Argonne Workshop, (World Scientific). https://www.worldscientific.com/worldscibooks/10.1142/1206 (1991)

  3. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988) https://doi.org/10.1007/BF01016429

    ADS  MathSciNet  MATH  Google Scholar 

  4. Arik, M., Coon, D.D.: Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 17, 524–527 (1976) https://doi.org/10.1063/1.522937

    ADS  MathSciNet  MATH  Google Scholar 

  5. Kuryshkin, V.V.: Generalized quantum operators of creation and annihilation. Ann. Fond. L. de Broglie 5, 111–125 (1980) https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=12600560

    Google Scholar 

  6. Jannussis, A., Brodimas, G., Sourlas, D., Zisis, V.: Remarks on the q-quantization. Lett. Nuovo Cimento 30, 123–127 (1981) https://doi.org/10.1007/BF02817324

    MathSciNet  Google Scholar 

  7. Mansour, T., Schork, M.: Commutation Relations, Normal Ordering, and Stirling Numbers, (Taylor & Francis). https://doi.org/10.1201/b18869 (2016)

  8. Macfarlane, A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. J. Phys. A: Math. Gen. 22, 4581–4588 (1989) https://doi.org/10.1088/0305-4470/22/21/020

    ADS  MathSciNet  MATH  Google Scholar 

  9. Biedenharn, L.C.: The quantum group SUq(2) and a q-analogue of the boson operators. J. Phys. A: Math. Gen. 22, L873–L878 (1989) https://doi.org/10.1088/0305-4470/22/18/004

    ADS  MATH  Google Scholar 

  10. Sun, C.P., Fu, H.C.: The q-deformed boson realisation of the quantum group SU(n)q, and its representations. J. Phys. A: Math. Gen. 22, L983–L986 (1989) https://doi.org/10.1088/0305-4470/22/21/001

    MathSciNet  MATH  Google Scholar 

  11. Hayashi, T.: Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127, 129–144 (1990) https://doi.org/10.1007/BF02096497

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bonatsos, D., Daskaloyannis, C.: Quantum groups and their applications in nuclear physics. Prog. Part. Nucl. Phys. 44, 537–618 (1999) https://doi.org/10.1016/S0146-6410(99)00100-3

    ADS  Google Scholar 

  13. Raychev, P.P.: Quantum Groups: Application to Nuclear and Molecular Spectroscopy. In: Sabin, J.R., Zerner, M.C. (eds.) Advances in Quantum Chemistry, 26 239-357 (Academic Press). https://doi.org/10.1016/S0065-3276(08)60114-8 (1995)

  14. Chaichian, M., Demichev, A.: Introduction to Quantum Groups, (World Scientific). https://doi.org/10.1142/3065 (1996)

  15. Chaichian, M., Felipe, R.G., Montonen, C.: Statistics of q-oscillators, quons, and relation to fractional statistics. J. Phys. A: Math. Gen. 26, 4017–4034 (1993) https://doi.org/10.1088/0305-4470/26/16/018

    ADS  MathSciNet  Google Scholar 

  16. Shanta, P., Chaturvedi, S., Srinivasan, V., Jagannathan, R.: Unified approach to the analogues of single-photon and multiphoton coherent states for generalized bosonic oscillators. J. Phys. A: Math. Gen. 27, 6433–6442 (1994) https://doi.org/10.1088/0305-4470/27/19/016

    ADS  MathSciNet  MATH  Google Scholar 

  17. Sunilkumar, V., Bambah, B.A., Jagannathan, R., Panigrahi, P.K., Srinivasan, V.: Coherent states of nonlinear algebras: Applications to quantum optics. J. Opt. B: Quantum Semiclass. Opt. 2, 126–132 (2000) https://doi.org/10.1088/1464-4266/2/2/311

    ADS  MathSciNet  Google Scholar 

  18. Lavagno, A., Narayana Swamy, P.: Generalized thermodynamics of q-deformed bosons and fermions. Phys. Rev. E 65, 036101 (2002) https://doi.org/10.1103/PhysRevE.65.036101

    ADS  Google Scholar 

  19. Narayana Swamy, P.: Interpolating statistics and q-oscillator algebras. Int. J. Mod. Phys. B 20, 697–713 (2006) https://doi.org/10.1142/S0217979206033498

    ADS  MathSciNet  MATH  Google Scholar 

  20. Chung, W.S., Algin, A.: Modified multidimensional q-deformed Newton oscillators: Algebra, interpolating statistics, and thermodynamics. Annal. Phys. 409, 167911 (2019) https://doi.org/10.1016/j.aop.2019.167911

    MATH  Google Scholar 

  21. Marinho, A., Brito, F.A., Chesman, C.: Thermal properties of a solid through q-deformed algebra. Physica A 391, 3424–3434 (2012) https://doi.org/10.1016/j.physa.2012.02.012

    ADS  MathSciNet  Google Scholar 

  22. Tristant, D., Brito, F.A.: Some electronic properties of metals through q-deformed algebra. Physica A 407, 276–286 (2014) https://doi.org/10.1016/j.physa.2014.04.008

    ADS  MATH  Google Scholar 

  23. Haghshenasfard, Z., Cottam, M.G.: q-deformed model of nonclassical quantum-statistical behaviour for an atom laser. Euro. Phys. J. D 67, 195 (2013) https://doi.org/10.1140/epjd/e2013-40159-5

    ADS  Google Scholar 

  24. Dey, S.: q-deformed noncommutative cat states and their nonclassical properties. Phys. Rev. D 91, 044024 (2015) https://doi.org/10.1103/PhysRevD.91.044024

    ADS  Google Scholar 

  25. Dey, S., Hussin, V.: Noncommutative q-photon-added coherent states. Phys. Rev. A 93, 053824 (2016) https://doi.org/10.1103/PhysRevA.93.053824

    ADS  Google Scholar 

  26. Blitvić, N.: The (q,t)-Gaussian process. J. Func. Anal. 263, 3270–3305 (2012) https://doi.org/10.1016/j.jfa.2012.08.006

    MathSciNet  MATH  Google Scholar 

  27. Wada, T., Suyari, H.: A two-parameter generalization of Shannon–Khinchin axioms and the uniqueness theorem. Phys. Lett. A 368, 199–205 (2007) https://doi.org/10.1016/j.physleta.2007.04.009

    ADS  MathSciNet  MATH  Google Scholar 

  28. Gell-Mann, M., Tsallis, C. (eds.): Nonextensive Entropy - Interdisciplinary Applications. Oxford Univ. Press, Oxford, United Kingdom (2004),https://global.oup.com/academic/product/nonextensive%2Dentropy%2D9780195159776%3Fcc%3Dus&lang%3Den&%23

  29. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, (Springer). https://doi.org/10.1007/978-0-387-85359-8 (2009)

  30. Kowalski, A.M., Rossignoli, R.D., Curado, E.M.F. (eds.): Concepts and Recent Advances in Generalized Information Measures and Statistics, https://doi.org/10.2174/97816080576031130101. Bentham Science Pub., United Arab Emirates (2013)

  31. Tsallis, C.: Beyond Boltzmann–Gibbs–Shannon in physics and elsewhere. Entropy 21, 696–724 (2019) https://doi.org/10.3390/e21070696

    ADS  MathSciNet  Google Scholar 

  32. Naudts, J.: Generalised Thermostatistics, (Springer). https://doi.org/10.1007/978-0-85729-355-8 (2011)

  33. Nonextensive Statistical Mechanics and Thermodynamics. http://tsallis.cat.cbpf.br/biblio.htm

  34. Carlitz, L.: A degenerate Staudt-Clausen theorem. Arch. Math. 7, 28–33 (1956) https://doi.org/10.1007/BF01900520

    MathSciNet  MATH  Google Scholar 

  35. Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15, 51–88 (1979) http://www.sciepub.com/reference/129983

    MathSciNet  MATH  Google Scholar 

  36. Balamurugan, M., Chakrabarti, R., Jagannathan, R.: An extension of Bernoulli polynomials inspired by the Tsallis statistics. arXiv:1612.0749 [math-ph

  37. Gelfand, I.M., Graev, M.I., Retakh, V.S.: General gamma functions, exponentials, and hypergeometric functions. Russian Math. Surveys 53, 1–55 (1998) https://doi.org/10.1070/RM1998v053n01ABEH000008

    ADS  MathSciNet  MATH  Google Scholar 

  38. Exton, H.: q-Hypergeometric Functions and Applications, (Ellis Harwood). http://cds.cern.ch/record/99100 (1983)

  39. Kac, V., Cheung, P.: Quantum Calculus,(Springer). https://doi.org/10.1007/978-1-4613-0071-7 (2002)

  40. Chakrabarti, R., Jagannathan, R.: A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A: Math. Gen. 24, L711–L718 (1991) https://doi.org/10.1088/0305-4470/24/13/002

    ADS  MathSciNet  MATH  Google Scholar 

  41. Jannussis, A., Brodimas, G., Mignani, I.: Quantum groups and Lie-admissible time evolution. J. Phys. A: Math. Gen. 24, L775–L778 (1991) https://doi.org/10.1088/0305-4470/24/14/004

    ADS  MathSciNet  MATH  Google Scholar 

  42. Arik, M., Demircan, E., Turgut, T., Ekinci, L., Mungan, M.: Fibonacci oscillators. Z. Phys. C: Particles and Fields 55, 89–95 (1992) https://doi.org/10.1007/BF01558292

    ADS  MathSciNet  Google Scholar 

  43. Jagannathan, R., Srinivasa Rao, K.: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv:math/0602613[math.NT

  44. Parthasarathy, R., Viswanathan, K.S.: A q-analogue of the supersymmetric oscillator and its q-superalgebra. J. Phys. A: Math. Gen. 24, 613–618 (1991) https://doi.org/10.1088/0305-4470/24/3/019

    ADS  MathSciNet  MATH  Google Scholar 

  45. Chaichian, M., Kulish, P.P.: Quantum lie superalgebras and q-oscillators. Phys. Lett. B 234, 72–80 (1990) https://doi.org/10.1016/0370-2693(90)92004-3

    ADS  MathSciNet  MATH  Google Scholar 

  46. Odaka, K., Kishi, T., Kamefuchi, S.: On quantization of simple harmonic oscillators. J. Phys. A: Math. Gen. 24, L591–596 (1991) https://doi.org/10.1088/0305-4470/24/11/004

    ADS  MathSciNet  MATH  Google Scholar 

  47. Chaturvedi, S., Jagannathan, R., Srinivasan, V.: Tamm-Dancoff deformation of bosonic oscillator algebras. Mod. Phys. Lett. A 8, 3727–3734 (1993) https://doi.org/10.1142/S0217732393003457

    ADS  MathSciNet  MATH  Google Scholar 

  48. Gavrilik, A.M., Rebesh, A.P.: A q-oscillator with ‘accidental’ degeneracy of energy levels. Mod. Phys. Lett. A 22, 949–960 (2007) https://doi.org/10.1142/S0217732307022827

    ADS  MathSciNet  MATH  Google Scholar 

  49. Gavrilik, A.M., Rebesh, A.P.: Occurrence of pairwise energy level degeneracies in q,p-oscillator model. Ukr. J. Phys. 53, 586–594 (2008) http://archive.ujp.bitp.kiev.ua/files/journals/53/6/530611p.pdf

    Google Scholar 

  50. Gavrilik, A.M., Rebesh, A.P.: Plethora of q-oscillators possessing pairwise energy level degeneracy. Mod. Phys. Lett. A 23, 921–932 (2008) https://doi.org/10.1142/S021773230802687X

    ADS  MathSciNet  MATH  Google Scholar 

  51. Katriel, J., Quesne, C.: Recursively minimally-deformed oscillators. J. Phys. A: Math. Gen. 37, 1650–1661 (1996) https://doi.org/10.1063/1.531475

    MathSciNet  MATH  Google Scholar 

  52. Burban, I.M.: On (p,q; α,β,l)-deformed oscillator and its generalized quantum Heisenberg-Weyl algebra. Phys. Lett. A 366, 308–314 (2007) https://doi.org/10.1016/j.physleta.2007.02.051

    ADS  MathSciNet  MATH  Google Scholar 

  53. Hounkonnou, M.N., Ngompe Nkouankam, E.B.: On (p,q,μ,ν,ϕ1,ϕ2)-generalized oscillator algebra and related bibasic hypergeometric functions. J. Phys. A: Math. Theor. 40, 8835–8844 (2007) https://doi.org/10.1088/1751-8113/40/30/015

    ADS  MathSciNet  MATH  Google Scholar 

  54. Gavrilik, A.M., Kachurik, I.I., Rebesh, A.P.: Quasi-Fibonacci oscillators. J. Phys. A: Math. Theor. 43, 245204 (2010) https://doi.org/10.1088/1751-8113/43/24/245204

    ADS  MathSciNet  MATH  Google Scholar 

  55. Chung, W.S., Hassanabadi, H.: φ-deformed boson algebra based on φ-deformed addition and non-classical properties of φ-deformed coherent states. Phys. Scr. 95, 035106 (2020) https://doi.org/10.1088/1402-4896/ab4f94

    ADS  Google Scholar 

  56. Mursaleen, M., Khan, F., Khan, A.: Approximation by (p,q)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10, 1725–1740 (2016) https://doi.org/10.1007/s11785-016-0553-4

    MathSciNet  MATH  Google Scholar 

  57. Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, 287 (2018) https://doi.org/10.1186/s13660-018-1878-5

    Google Scholar 

  58. Soontharanon, J., Sitthiwirattham, T.: On fractional (p,q)-calculus. Adv. Difference Equations 2020, 35 (2020) https://doi.org/10.1186/s13662-020-2512-7

    Google Scholar 

  59. Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: f -oscillators and nonlinear coherent states. Phys. Scr. 55, 528–541 (1997) https://doi.org/10.1088/0031-8949/55/5/004

    ADS  Google Scholar 

  60. Dudinets, I.V., Man’ko, V.I., Marmo, G., F Zaccaria, F.: Tomography on f -oscillators. Phys. Scr. 92, 115101 (2017) https://doi.org/10.1088/1402-4896/aa8e22

    ADS  Google Scholar 

  61. Man’ko, V.I., Marmo, G., Solimeno, S., Zaccaria, F.: Physical nonlinear aspects of classical and quantum q-oscillators. Int. J. Mod. Phys. A 8, 3577–3597 (1993). https://doi.org/10.1142/S0217751X93001454

    ADS  MathSciNet  MATH  Google Scholar 

  62. Man’ko, V.I., Marmo, G., Solimeno, S., Zaccaria, F.: Correlation functions of quantum q-oscillators. Phys. Lett. A 176, 173–175 (1993). https://doi.org/10.1016/0375-9601(93)91029-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Man’ko, V.I., Tino, G.M.: Experimental limit on the blue shift of the frequency of light implied by a q-nonlinearity. Phys. Lett. A 202, 24–27 (1995). https://doi.org/10.1016/0375-9601(95)00327-Y

    ADS  MathSciNet  MATH  Google Scholar 

  64. Lerner, E.C., Huang, H.W., Walters, G.E.: Some mathematical properties of oscillator phase operators. J. Math, Phys. 11, 1679–1684 (1970) https://doi.org/10.1063/1.1665310

    ADS  MathSciNet  Google Scholar 

  65. Sudarshan, E.C.G.: Diagonal harmonious state representations. Internat. J. Theor. Phys. 32, 1069–1076 (1993) https://doi.org/10.1007/BF00671789

    ADS  MathSciNet  MATH  Google Scholar 

  66. Dodonov, V.V., Mizrahi, S.S.: Uniform nonlinear evolution equations for pure and mixed quantum States. Ann. Phys. 237, 226–268 (1995) https://doi.org/10.1006/aphy.1995.1010

    ADS  MathSciNet  MATH  Google Scholar 

  67. Dodonov, V.V.: Nonclassical states in quantum optics: A squeezed review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002) https://doi.org/10.1088/1464-4266/4/1/201

    ADS  MathSciNet  Google Scholar 

  68. Borges, E.P.: On a q-generalization of circular and hyperbolic functions. J. Phys. A: Math. Gen. 31, 5281–5288 (1998) https://doi.org/10.1088/0305-4470/31/23/011

    ADS  MathSciNet  MATH  Google Scholar 

  69. Bendjeffal, A., Smida, A., Messamahb, J., Hachemanec, M.: A class of nonlinear coherent states attached to Tsallis q-exponential. Eur. Phys. J. Plus 134, 330 (2019) https://doi.org/10.1140/epjp/i2019-12865-9

    Google Scholar 

  70. Jaganathan, R., Sinha, S.: A q-deformed nonlinear map. Phys. Lett. A 338, 277–287 (2005) https://doi.org/10.1016/j.physleta.2005.02.042

    ADS  MathSciNet  MATH  Google Scholar 

  71. Patidar, V., Sud, K.K.: A comparative study on the co-existing attractors in the Gaussian map and its q-deformed version. Commun. Nonlin. Sci. Numer. Simul. 14, 827–838 (2009) https://doi.org/10.1016/j.cnsns.2007.10.015

    Google Scholar 

  72. Patidar, V., Purohit, G., Sud, K.K.: Dynamical Behavior of q-deformed Henon map. Internat. J. Bifur. Chaos 21, 1349–1356 (2011) https://doi.org/10.1142/S0218127411029215

    ADS  MathSciNet  MATH  Google Scholar 

  73. Banerjee, S., Parthasarathy, R.: A q-deformed logistic map and its implications. J. Phys. A: Math. Theor. 44, 045104 (2011) https://doi.org/10.1088/1751-8113/44/4/045104

    ADS  MathSciNet  MATH  Google Scholar 

  74. Behnia, S., Yahyavi, M., Habibpourbisafar, R.: Watermarking based on discrete wavelet transform and q-deformed chaotic map, Chaos, Solitons & Fractals 6-17 104 (2017). https://doi.org/10.1016/j.chaos.2017.07.020

  75. Balakrishnan, J., Iyengar, S.V., Kurths, J.: Missing cycles: Effect of climate change on population dynamics. Ind. Acad. Sci. Conf. Series 1, 93–99 (2017) https://www.ias.ac.in/article/fulltext/conf/001/01/0093-0099

    Google Scholar 

  76. Canovas, J., Munoz-Guillermo, M.: On the dynamics of the q-deformed logistic map. Phys. Lett. A 383, 1742–1754 (2019) https://doi.org/10.1016/j.physleta.2019.03.003

    ADS  MathSciNet  Google Scholar 

  77. Pourahmadi, M.: Taylor Expansion of \(\exp {\left ({\sum }_{k = 0}^{\infty } a_{k} z^{k} \right )}\) and Some Applications. Amer. Math. Monthly 91, 303–307 (1984) https://doi.org/10.1080/00029890.1984.11971411

    MathSciNet  Google Scholar 

  78. Sachkov, V.N.: Combinatorial Methods in Discrete Mathematics, (Cambridge Univ. Press). https://doi.org/10.1017/CBO9780511666186 (1996)

  79. Quesne, C.: Disentangling q-Exponentials: A General Approach. Internat. J. Theor. Phys. 43, 545–559 (2004) https://doi.org/10.1023/B:IJTP.0000028885.42890.f5

    ADS  MathSciNet  MATH  Google Scholar 

  80. Chung, W.S.: The new type of extended uncertainty principle and some applications in deformed quantum mechanics. Internat. J. Theor. Phys. 58, 2575–2591 (2019) https://doi.org/10.1007/s10773-019-04146-z

    ADS  MathSciNet  MATH  Google Scholar 

  81. Andrews, G.E., Askey, R., Roy, R.: Special functions, Encyclopedia of Mathematics and its Applications 71, (Cambridge Univ Press (1999)

  82. Chung, W.S., Gavrilik, A.M., Nazarenko, A.V.: Photon gas at the Planck scale within the doubly special relativity. Physica A: Stat. Mech. Appl. 533, 121928 (2019) https://doi.org/10.1016/j.physa.2019.121928

    MathSciNet  Google Scholar 

  83. Jannussis, A.: New deformed Heisenberg oscillator. J. Phys. A: Math. Gen. 26, L233–L238 (1993) https://doi.org/10.1088/0305-4470/26/5/011

    ADS  MathSciNet  MATH  Google Scholar 

  84. Chakrabarti, R., Chandrashekar, R., Naina Mohammed, S.S.: Nonextensive statistics of the classical relativistic ideal gas. Physica A: Stat. Mech. Appl. 389, 1571–1584 (2010) https://doi.org/10.1016/j.physa.2009.12.040

    ADS  Google Scholar 

  85. Kim, S., Chung, W.S., Hassanabadi, H.: q-deformed Gamma function, q-deformed probability distributions and q-deformed statistical physics based on Tsallis q-exponential function. Eur. Phys. J. Plus 134, 572 (2019) https://doi.org/10.1140/epjp/i2019-13082-4

    Google Scholar 

  86. Borges, E.P.: A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A: Stat. Mech. Appl. 340, 95–101 (2004) https://doi.org/10.1016/j.physa.2004.03.082

    ADS  MathSciNet  Google Scholar 

  87. Chung, W.S.: Two different interpretations of q-boson algebra and a new q-deformed statistical physics. Phys. Scr. 94, 115001 (2019) https://doi.org/10.1088/1402-4896/ab2caa

    ADS  Google Scholar 

  88. Rebesh, A.P., Gavrilik, A.M., Kachurik, I.I.: Elements of μ-Calculus and Thermodynamics of μ-Bose Gas Model. Ukr. J. Phys. 58, 1182–1191 (2013) https://doi.org/10.15407/ujpe58.12.1182

    Google Scholar 

  89. Schwämmlea, V., Tsallis, C.: Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy. J. Math. Phys. 48, 113301 (2007) https://doi.org/10.1063/1.2801996

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameen Ahmed Khan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannathan, R., Khan, S.A. On the Deformed Oscillator and the Deformed Derivative Associated with the Tsallis q-exponential. Int J Theor Phys 59, 2647–2669 (2020). https://doi.org/10.1007/s10773-020-04534-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04534-w

Keywords

Navigation