Skip to main content
Log in

Conformal Cyclic Evolution of the Universe: a Loop Quantum Gravity Perspective

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The conformal cyclic cosmological evolution of the universe is discussed with the principles of loop quantum gravity. The application of quantum mechanical aspects enables connecting surface between two cyclic aeons. From existing models entropy of conformal evolution is found to be modified in the light of this discussion. Infinite volume problem in conformal cyclic cosmology model is resolved with these loop quantum gravitational solutions. Various bouncing scale factors are compared. Conformal cyclic cosmological evolution does have a connection with the loop quantum cosmological scenario with this idea bridged. This work briefs the possible initial and final stages of the universe from the CCC and LQG scenario. In the connecting point between two aeons, the existence of curvature duality is also obtained and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An, D., Meissner, K.A., Penrose, R.: Apparent evidence for hawking points in the cmb sky. arXiv:1808.01740 (2018)

  2. Araujo, A., Jennen, H., Pereira, J., Sampson, A., Savi, L.: On the spacetime connecting two aeons in conformal cyclic cosmology. Gen. Relativ. Gravit. 47(12), 151 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ashtekar, A., Corichi, A. , Singh, P.: Robustness of key features of loop quantum cosmology. Phys. Rev. D 77(2), 024046 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bianchi, E., Christodoulou, M., d’Ambrosio, F., Haggard, H.M., Rovelli, C.: White holes as remnants: a surprising scenario for the end of a black hole. Class. Quantum Gravity 35(22), 225003 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bojowald, M.: Loop quantum cosmology. Living Rev. Relativ. 11 (1), 4 (2008)

    Article  ADS  Google Scholar 

  6. Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98(8), 080502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Brunnemann, J., Rideout, D.: Properties of the volume operator in loop quantum gravity: I. results. Class. Quantum Gravity 25(6), 065001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Caldwell, R. R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545(1–2), 23–29 (2002)

    Article  ADS  Google Scholar 

  9. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w<- 1 causes a cosmic doomsday. Phys. Rev. Lett. 91(7), 071301 (2003)

    Article  ADS  Google Scholar 

  10. Date, G., Hossain, G.M.: Genericness of a big bounce in isotropic loop quantum cosmology. Phys. Rev. Lett. 94(1), 011302 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dymnikova, I., Dobosz, A., Fil’chenkov, M., Gromov, A.: Universes inside a λ black hole. Phys. Lett. B 506(3–4), 351–361 (2001)

    Article  ADS  Google Scholar 

  12. Easson, D. A., Brandenberger, R. H.: Universe generation from black hole interiors. J. High Energy Phys. 2001(06), 024 (2001)

    Article  MathSciNet  Google Scholar 

  13. Einasto, J., Suhhonenko, I., Hütsi, G., Saar, E., Einasto, M., Liivamägi, L., Müller, V., Starobinsky, A., Tago, E., Tempel, E.: Towards understanding the structure of voids in the cosmic web. Astron. Astrophys. 534, A128 (2011)

    Article  ADS  Google Scholar 

  14. Ellis, G.F., Van Elst, H.: Cosmological models. In: Theoretical and Observational Cosmology, pp. 1–116. Springer (1999)

  15. Gourgoulhon, E., Bejger, M., Mancini, M.: Tensor calculus with open-source software: the SageManifolds project. J. Phys.: Conf. Ser. 600(1), 012002 (2015). https://doi.org/10.1088/1742-6596/600/1/012002

    Google Scholar 

  16. Hartle, J.B., Hawking, S., Hertog, T.: No-boundary measure of the universe. Phys. Rev. Lett. 100(20), 201301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hawking, S. W., Ellis, G. F. R.: The Large Scale Structure of Space-Time, vol. 1. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  18. Jow, D. L., Scott, D.: Re-evaluating evidence for hawking points in the cmb. J. Cosmol. Astropart. Phys. 2020(03), 021 (2020)

    Article  Google Scholar 

  19. Natarajan, S., Chandramohan, R.: Conformal evolution of phantom dominated final stages of the universe in higher dimensions. Can. J. Phys. (ja). https://doi.org/10.1139/cjp-2019-0626 (2020)

  20. Natarajan, S., Chandramohan, R., Swminathan, R.: Conformal cyclic evolution of phantom energy dominated universe. Rev. Mex. Fís. 66(2), 209–223 (2020)

    Article  Google Scholar 

  21. Penrose, R.: The road to reality: a complete guide to the laws of the universe. Random house (2006)

  22. Penrose, R.: Conformal cyclic cosmology. In: Dark Matter, and Black Hole Evaporation. IGC Inaugural Conference, Penn State University, State College, pp. 7–11 (2007)

    Google Scholar 

  23. Penrose, R.: Black holes, quantum theory and cosmology. J. Phys.: Conf. Ser. 174, 012001 (2009). IOP Publishing

    Google Scholar 

  24. Penrose, R.: The basic ideas of conformal cyclic cosmology. In: AIP Conference Proceedings 11, vol. 1446, pp. 233–243. AIP (2012)

  25. Penrose, R.: On the gravitization of quantum mechanics 2: conformal cyclic cosmology. Found. Phys. 44(8), 873–890 (2014)

    Article  ADS  Google Scholar 

  26. Rovelli, C.: Loop quantum gravity. Living Rev. Relativ. 11(1), 5 (2008)

    Article  ADS  Google Scholar 

  27. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442(3), 593–619 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. Rovelli, C., Vidotto, F.: Planck stars. Int. J. Mod. Phys. D 23 (12), 1442026 (2014)

    Article  ADS  Google Scholar 

  29. Rovelli, C., Vidotto, F.: Pre-big-bang black-hole remnants and past low entropy. Universe 4(11), 129 (2018). https://doi.org/10.3390/universe4110129

    Article  ADS  Google Scholar 

  30. Rovelli, C., Vidotto, F.: White-hole dark matter and the origin of past low-entropy. arXiv:1804.04147 (2018)

  31. Sami, M., Singh, P., Tsujikawa, S.: Avoidance of future singularities in loop quantum cosmology. Phys. Rev. D 74(4), 043514 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. Shriethar, N., Rajendran, N., Rathinam, C.: Quantum gravitational effects on hawking points. Prepared for submission (2020)

  33. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.0.0). https://www.sagemath.org (2020)

  34. Thiemann, T.: Lectures on loop quantum gravity. In: Quantum Gravity, pp. 41–135. Springer (2003)

  35. Van Raamsdonk, M.: Building up space–time with quantum entanglement. Int. J. Mod. Phys. D 19(14), 2429–2435 (2010). https://doi.org/10.1142/S0218271810018529

    Article  ADS  MathSciNet  Google Scholar 

  36. Wall, A.C.: The generalized second law implies a quantum singularity theorem. Class. Quantum Gravity 30(16), 165003 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  37. Wei, Y.H.: Big rip in so (1, 1) phantom universe. arXiv:0502077 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Shriethar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shriethar, N., Rathinam, C. Conformal Cyclic Evolution of the Universe: a Loop Quantum Gravity Perspective. Int J Theor Phys 59, 3995–4012 (2020). https://doi.org/10.1007/s10773-020-04651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04651-6

Keywords

Navigation