Skip to main content

Advertisement

Log in

Spermine protects aluminium chloride and iron-induced neurotoxicity in rat model of Alzheimer's disease via attenuation of tau phosphorylation, Amyloid-β (1–42) and NF-κB pathway

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is the most prevalent type of dementia, characterized by a gradual decline in cognitive and memory functions of the aged peoples. Long-term exposure to heavy metals (aluminium and iron) cause neurotoxicity by amyloid plaques accumulation, tau phosphorylation, increased oxidative stress, neuroinflammation, and cholinergic neurons degeneration, contributes to the development of AD-like symptoms. The present research work is designed to investigate the neuroprotective effect of spermine in aluminium chloride (AlCl3), and iron (Fe) induced AD-like symptoms in rats. Rats were administered of AlCl3 (100 mg/kg p.o.) alone and in combination with iron (120 μg/g, p.o.) for 28 days. Spermine (5 and 10 mg/kg) through intraperitoneal (i.p.) route was given for 14 days. The recognition and spatial memory impairment were tasted using Morris water maze (MWM), actophotometer, and Novel Object Recognition test (NORT). All the rats were sacrificed on day 29, brains were isolated, and tissue homogenate was used for neuroinflammatory, biochemical, neurotransmitters, metals concentration, and nuclear factor-kappa B (NF-κB) analysis. In the present study, AlCl3 and iron administration elevated oxidative stress, cytokines release, dysbalanced neurotransmitters concentration, and biochemical changes. Rats treated with spermine dose-dependently improved the recognition and spatial memory, attenuated proinflammatory cytokine release, and restored neurotransmitters concentration and antioxidant enzymes. Spermine also mitigated the increased beta-amyloid (Aβ42), with downregulation of tau phosphorylation. Furthermore, spermine augmented the hippocampal levels of B cell leukaemia/lymphoma-2 (Bcl-2), diminished nuclear factor-kappa B (NF-κB) and caspase-3 (casp-3) expression. Moreover, spermine exhibited the neuroprotective effect through anti-inflammatory, antioxidant, neurotransmitters restoration, anti-apoptotic Aβ42 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Al:

Aluminium

AlCl3:

Aluminium chloride

Fe:

Iron

MWM:

Morris water maze

SOD:

Superoxide dismutase

GR:

Glutathione reductase

IL:

Interleukin

NORT:

Novel object recognition test

LPO:

Lipid peroxidation

TNF-α:

Tumor necrosis factor-alpha

MDA:

Malondialdehyde

DA:

Dopamine

AChE:

Acetylcholinesterase

GABA:

Gamma-aminobutyric acid

Aβ:

Amyloid-β peptide

NFTs:

Neurofibrillary tangles

CNS:

Central nervous system

Ach:

Acetylcholine

ELISA:

Enzyme-linked immunosorbent assay

ECD:

Electrochemical detection

HPLC:

High-performance liquid chromatography

AAS:

Atomic absorption spectrophotometer

CPCSEA:

Committee for the Purpose of Control and Supervision of Experiments on Animals

References

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David MO, Abdel-Wahhab MA (2017) Neuroprotective effect of nanodiamond in Alzheimer’s disease rat model: a pivotal role for modulating NF-κB and STAT3 signaling. Mol Neurobiol 54(3):1906–1918

    Article  CAS  PubMed  Google Scholar 

  • Alexandrov PN, Zhao Y, Pogue AI, Tarr MA, Kruck TP, Percy ME (2005) Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J Alzheimers Dis. 8:117–127 (discussion 209–215)

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14

    Google Scholar 

  • Bharathi, (2006) A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Res Rev 52:275–292

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Zhao Y, Hill JM, Percy ME, Lukiw WJ (2014) Aluminum and its potential contribution to Alzheimer’s disease (AD). Front Aging Neurosci 6:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Bondy SC (2013) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 315:1–7. https://doi.org/10.1016/j.tox.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Lockwood AH, Sonawane BR (2005) Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 113(9):1250–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang M, Ruan D, She J (2002) Early chronic aluminium exposure impairs long-term potentiation and depression to the rat dentate gyrus in vivo. Neuroscience 112(4):879–887

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18(4):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT (2010) Selective translational control of the alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285(41):31217–31232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings Cole JLG (2002) Alzheimer disease. JAMA 287(18):2335–2338

    Article  PubMed  Google Scholar 

  • Del Maestro RF, McDonald W, Anderson R (1983) Superoxide dismutase, catalase and glutathione peroxidase in experimental and human brain tumours. Oxyg Radic Scav Syst 2:28

    Google Scholar 

  • Dickstein DL, Walsh J, Brautigam H, Stockton SD, Gandy S, Hof PR (2010) Role of vascular risk factors and vascular dysfunction in Alzheimer’s disease. Mt Sinai J Med 77(1):82–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Donzanti BA& Yamamoto BK, (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 43(11):913–922

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    Article  CAS  PubMed  Google Scholar 

  • Enas AK (2010) Study of possible protective and therapeutic influence of coriander (Coriandrum sativum L.) against neurodegenerative disorders and Alzheimer’s disease induced by aluminum chloride in cerebral cortex of male albino rats. Nat Sci 8:202–213

    Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 31(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Exley C, Esiri MM (2006) Severe cerebral congophilic angiopathy coincident with increased brain aluminium in a resident of Camelford, Cornwall, UK. J Neurol Neurosurg Psychiatry 77(7):877–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galva C, Artigas P, Gatto C (2012) Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis. J Cell Sci 125(24):6137–6147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Jiang ZF (2009) Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Tan B, Ren W, Rahu N, Dad R, Kalhoro DH, Yin Y (2017) Polyamines: therapeutic perspectives in oxidative stress and inflammatory diseases. Amino Acids 49(9):1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Karantzoulis S, Galvin JE (2011) Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother 11(11):1579–1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Raj K, Gupta YK, Singh S (2021) Allicin ameliorates aluminium-and copper-induced cognitive dysfunction in Wistar rats: relevance to neuro-inflammation, neurotransmitters and Aβ (1–42) analysis. J Biol Inorg Chem 26(4):495–510

    Article  CAS  PubMed  Google Scholar 

  • Kawahara M (2005) Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis. 8:171–82

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong J, Tesco G (2018) BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener 13(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Kocahan S, Doğan Z (2017) Mechanisms of Alzheimer’s disease pathogenesis and prevention: the brain, neural pathology, N-methyl-d-aspartate receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci 15(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Xu P, Wu S, Jiang Z, Huang Z, Li Q, Chen D (2018) Diosgenin attenuates lipopolysaccharide-induced Parkinson’s disease by inhibiting the TLR/NF-κB pathway. J Alzheimers Dis 64(3):943–955

    Article  CAS  PubMed  Google Scholar 

  • Liang RF, Li WQ, Wang XH, Zhang HF, Wang H, Wang JX, Niu Q (2012) Aluminium-maltolate-induced impairment of learning, memory and hippocampal long-term potentiation in rats. Ind Health. 50:428–436

    Article  CAS  PubMed  Google Scholar 

  • Limón ID, Angulo-Cruz I, Sánchez-Abdon L, Patricio-Martínez A (2021) Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front Neurosci 15:578922

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin WT, Chen RC, Lu WW, Liu SH, Yang FY (2015) Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer’s disease rat model. Sci Rep 5(1):1–7

    Google Scholar 

  • Liu Y, Zhou W, Chen FF, Xiao F, Zhu HY, Zhou Y, Guo GC (2020) Overexpression of LMP-1 decreases apoptosis in human nucleus Pulposus cells via suppressing the NF-κB signaling pathway. Oxid Med Cell Longev 2020:1–13

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Mold MJ, O’Farrell A, Morris B, Exley C (2021) Aluminum and Tau in neurofibrillary tangles in familial alzheimer’s disease. J Alzheimer’s Dis Rep (Preprint). 5:283–294

    Article  Google Scholar 

  • Moris RM (1984) Developments of a water-maze procedure for studing spatial learing in the rats. J Neurosci Method 11(1):47–60

    Article  Google Scholar 

  • Nampoothiri M, John J, Kumar N, Mudgal J, Nampurath GK, Chamallamudi MR (2015) Modulatory role of simvastatin against aluminium chloride-induced behavioural and biochemical changes in rats. Behav Neurol. 2015:210169

    Article  PubMed  PubMed Central  Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratico D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VMY (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16(9):1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra W (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25(22):5474

    Article  CAS  PubMed Central  Google Scholar 

  • Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD (2015) Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 9:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Nehru B (2018) Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 26(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar P (2018) Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: biochemical and neurochemical evidences. Neurosci Res 133:38–47

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Jamwal S, Kumar P (2015) Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: possible neurotransmitters modulation mechanism. Neurochem Res 40(8):1758–1766

    Article  CAS  PubMed  Google Scholar 

  • Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F (2009) Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 44(11):727–732

    Article  CAS  PubMed  Google Scholar 

  • Sottocasa GL, Kuylenstierna BO, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria: a biochemical and morphological study. J Cell Biol 32(2):415–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HL, Kuo EY, Lai TW (2018) Vascular delivery of intraperitoneal Evans blue dye into the blood–brain barrier-intact and disrupted rat brains. NeuroReport 29(11):924–931

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Zhou S, Yang L, Shi Q, Li Y, Zhang K, Yang L, Zhao M, Yang Q (2016) Imbalance between glutamate and GABA in Fmr1 knockout astrocytes influences neuronal development. Genes 7(8):45–69

    Article  PubMed Central  Google Scholar 

  • Wills E (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99(3):667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Du Y, Xue H, Wu Y, Zhou B (2012) Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging 33(1):199–201

    Article  CAS  PubMed  Google Scholar 

  • Xu YZ, Deng XH, Bentivoglio M (2007) Differential response of apoptosis-regulatory Bcl-2 and Bax proteins to an inflammatory challenge in the cerebral cortex and hippocampus of aging mice. Brain Res Bull 74(5):329–335

    Article  CAS  PubMed  Google Scholar 

  • Xu TT, Li H, Dai Z, Lau GK, Li BY, Zhu WL, Zhan SJ (2020) Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. Aging (Albany NY) 12(7):6401

    Article  CAS  Google Scholar 

  • Yatin SM, Yatin M, Varadarajan S, Ain B, Butterfield DA (2001) Role of spermine in amyloid β-peptide-associated free radical-induced neurotoxicity. J Neurosci Res 63(5):395–401

    Article  CAS  PubMed  Google Scholar 

  • Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CA, Yu L (1980) Resolution and reconstitution of succinate-cytochrome c reductase. Preparations and properties of high purity succinate dehydrogenase and ubiquinol—cytochrome c reductase. Biochim Biophys Acta. 591(2):409–420

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa SA, Shan X, Jones BA, Zhao G, Woodward ML, Li X, Vocadlo DJ (2014) Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice. Mol Neurodegener 9(1):1–14

    Article  CAS  Google Scholar 

  • Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, Tracey KJ (1997) Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med 185(10):1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Han Y, Wang J, Hou D, Deng H, Deng YL, Song Z (2018) Comparative epidemiological investigation of Alzheimer’s disease and colorectal cancer: the possible role of gastrointestinal conditions in the pathogenesis of AD. Front Aging Neurosci 10:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hill JM, Bhattacharjee S, Percy ME, Pogue AI, Lukiw WJ (2014) Aluminum-induced amyloidogenesis and impairment in the clearance of amyloid peptides from the central nervous system in Alzheimer’s disease. Front Neurol 5:167

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are thankful to Shri Praveen Garg, chairman ISF College of Pharmacy, Moga, Punjab for providing research platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsher Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, K., Gupta, G.D. & Singh, S. Spermine protects aluminium chloride and iron-induced neurotoxicity in rat model of Alzheimer's disease via attenuation of tau phosphorylation, Amyloid-β (1–42) and NF-κB pathway. Inflammopharmacol 29, 1777–1793 (2021). https://doi.org/10.1007/s10787-021-00883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00883-y

Keywords

Navigation