Skip to main content
Log in

Effects of mechanical grinding on initial activation and rate capability of Zr–Ti based Laves phase alloy electrode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Surface modification of Zr0.9Ti0.1Ni1.1Co0.1Mn0.5V0.2Cr0.1 alloy was accomplished by mechanical grinding (MG). The decrepitation of alloy particles gave rise to a new surface. The effect of MG was systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), pressure-composition (PC) isotherms and electrochemical impedance spectroscopy (EIS). Initial activation and rate capability of a negative electrode made from this alloy were significantly improved by MG treatment at 300 rpm for 0.5–1 h, but prolonged MG treatment (10 h) reduced the nominal discharge capacity from 350 mAh g−1 to 180 mAh g−1. Under these conditions the alloy particles disintegrate and become nanocrystalline, which reduces the discharge capacity owing to the change in the stereology of tetrahedral interstices available for hydrogen storage. The data based on PC isotherms and hydriding kinetics indicates that the equilibrium hydrogen pressure increases and the hydriding rate and storage capacity are significantly reduced by prolonged MG treatment. EIS data reveal that the improved rate capability can be ascribed to an enhanced charge-transfer reaction which is the rate-determining step in the hydriding and dehydriding reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M (2000) J Alloys Comp 311:L5–L7

    Article  CAS  Google Scholar 

  2. Liu Y, Pan H, Gao M, Zhu Y, Lei Y, Wang Q (2004) Int J Hydrogen Energy 29:297–305

    Article  CAS  Google Scholar 

  3. Wang Y, Gao XP, Lu ZW, Hu WK, Zhou Z, Qu JQ, Shen PW (2005) Electrochim Acta 50:2187–2191

    Article  CAS  Google Scholar 

  4. Yasuoka S, Magari Y, Murata T, Tanaka T, Ishida J, Nakamura H, Nohma T, Kihara M, Baba Y, Teraoka H (2006) J Power Sources 156:662–666

    Article  CAS  Google Scholar 

  5. Fetcenko MA, Venkatesan S (1990) Prog Batter Sol Cells 9:259–264

    CAS  Google Scholar 

  6. Moriwaki Y, Gamo T, Shintani A, Iwaki T (1989) Denki Kagaku 57:488–491

    Google Scholar 

  7. Sawa H, Wakao S, Furukawa J (1990) Denki Kagaku 58:862–867

    Google Scholar 

  8. Wakao S, Sawa H, Furukawa J (1991) Denki Kagaku 59:945–949

    Google Scholar 

  9. Zuttel A, Mail F, Schlapbach L (1994) J Alloys Compd 209:99–105

    Article  Google Scholar 

  10. Yan D, Sandrock G, Suda S (1994) J Alloys Compd 216:237–242

    Article  Google Scholar 

  11. Iwakura C, Choi WK, Zhang SG, Inoue H (1999) Electrochim Acta 44:1677–1679

    Article  CAS  Google Scholar 

  12. Gao XP, Zhang W, Yang HB, Song DY, Zhang YS, Zhou ZX, Shen PW (1996) J Alloys Compd 235:225–231

    Article  CAS  Google Scholar 

  13. Li ZP, Higuchi E, Liu BH, Suda S (1999) J Alloys Compd 293–295:593–600

    Article  Google Scholar 

  14. Sun D, Latroche M, Percheron-Guegan A (1997) J Alloys Compd 257:302–305

    Article  CAS  Google Scholar 

  15. Lee S-M, Kim S-H, Lee J-Y (2002) J Alloys Compd 330–332:796–801

    Article  Google Scholar 

  16. Hesabi ZR, Simchi A, Reihani SMS (2006) Mater Sci Eng A428:159–168

    CAS  Google Scholar 

  17. Ikeya T, Kumai K, Iwahori T (1993) J Electrochem Soc 140:3082–3086

    Article  CAS  Google Scholar 

  18. Burgio N, Iasonna A, Magini M, Martelli S, Padella F (1991) Il Nuovo Cimento 13D:459–476

    Article  CAS  Google Scholar 

  19. Ivey DG, Northwood DO (1986) Ziet Phys Chem NF 147:191–209

    CAS  Google Scholar 

  20. Kirchheim R (1982) Acta Metall 30:1069–1107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Matsuoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, M., Tamura, K. Effects of mechanical grinding on initial activation and rate capability of Zr–Ti based Laves phase alloy electrode. J Appl Electrochem 37, 759–764 (2007). https://doi.org/10.1007/s10800-007-9311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9311-7

Keywords

Navigation