Skip to main content
Log in

Morphology-dependent electrochemical supercapacitive characteristics of nanostructured manganese dioxide

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The dependence on morphology of the supercapacitive characteristics of manganese dioxide nanospheres (NSs) and nanorods (NRs) was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and a series of electrochemical techniques. Because the nanosized pores in MnO2 NSs resulted in high surface area, MnO2 electrodes made of NSs had higher specific capacitance (SC) than those made of NRs at current densities less than 2.0 A g−1. However, at current densities over 2.0 A g−1, the power density of MnO2 electrodes composed of NRs was better than that of NSs. The high surface area and nanosized pores in MnO2 NSs increase the number of redox active sites, which leads to high specific capacitance. On the other hand, the small pore size in MnO2 NSs restricts the rates of charge and discharge, thus limiting their power density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  2. Burke A (2000) J Power Sources 91:37

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  4. Sarangapani S, Tilak BV, Chen CP (1996) J Electrochem Soc 143:3791

    Article  CAS  Google Scholar 

  5. Reddy RN, Reddy RG (2004) J Power Sources 132:315

    Article  CAS  Google Scholar 

  6. Nakagava H, Shudo A, Miura K (2000) J Electrochem Soc 147:38

    Article  Google Scholar 

  7. Novak P, Müller K, Santanam KSV, Hass O (1997) Chem Rev 97:207

    Article  CAS  Google Scholar 

  8. Jeong YU, Manthiram A (2001) J Electrochem Soc 148:A189

    Article  CAS  Google Scholar 

  9. Cao L, Kong LB, Liang YY, Li HL (2004) Chem Commun 14:1646

    Article  Google Scholar 

  10. Zhou YK, He BL, Zhou WJ, Li HL (2004) J Electrochem Soc 151:A1052

    Article  CAS  Google Scholar 

  11. Celine L, Cristelle P, John C, Pierre-Louis T, Yury G, Patrice S (2008) J Am Chem Soc 130:2730

    Article  Google Scholar 

  12. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochimica Acta 35:263

    Article  CAS  Google Scholar 

  13. Kim H, Popov BN (2002) J Power Sources 104:52

    Article  CAS  Google Scholar 

  14. Chang KH, Hu CC (2004) Electrochem Solid-State Lett 7:A466

    Article  CAS  Google Scholar 

  15. Soudan P, Gaudet J, Guay D, Bélanger D, Schulz R (2002) Chem Mater 14:1210

    Article  CAS  Google Scholar 

  16. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220

    Article  CAS  Google Scholar 

  17. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444

    Article  CAS  Google Scholar 

  18. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184

    Article  CAS  Google Scholar 

  19. Zhao DD, Bao SJ, Zhou WJ, Li HL (2007) Electrochem Commun 9:869

    Article  CAS  Google Scholar 

  20. Yuan JK, Laubernds K, Zhang QH, Suib LS (2003) J Am Chem Soc 125:4966

    Article  CAS  Google Scholar 

  21. Srinivasan V, Weidner JW (2000) J Electrochem Soc 147:880

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Yangtze Normal University Research Start-up Foundation and Science and Technology Research Project of Chongqing Education Board (KJ081304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, GQ., Zhang, ST. Morphology-dependent electrochemical supercapacitive characteristics of nanostructured manganese dioxide. J Appl Electrochem 39, 1033–1038 (2009). https://doi.org/10.1007/s10800-008-9751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9751-8

Keywords

Navigation