Skip to main content
Log in

Enhanced nitrate reduction with copper phthalocyanine-coated carbon nanotubes in a solid polymer electrolyte reactor

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Research on nitrate removal has drawn more attention because of the increasing nitrate contamination in ground and surface water. In this work, copper phthalocyanine supported on functionalised multiwalled carbon nanotubes (CuPc/CNT) prepared using the impregnation method was characterised and tested for their electrocatalytic behaviour towards nitrate reduction. Cyclic voltammetry, rotating disc electrode and chronoamperometry techniques were employed for the electrochemical characterisation. The CuPc/CNT electrocatalyst showed higher catalytic activity towards nitrate reduction than CuPc supported on carbon black (CuPc/C). From kinetic studies, the order of reaction and the reaction rate constant were found to be 0.78, 15.03 and 0.81, 0.46 s−1 for CuPc/CNT and CuPc/C, respectively. Electrolysis studies in an H-cell at 24 h showed the percentage of nitrate removal up to 76 and 45 % for CuPc/CNT and CuPc/C, respectively. Furthermore, nitrate reduction in a solid polymer electrolyte reactor with membrane electrode assemblies designed using supported CuPc cathode showed a maximum faradaic efficiency of 41 % for CuPc/CNT and 38 % for CuPc/C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vigil J, Warburton S, Haynes WS, Kaiser LR (1965) Nitrates in municipal water supply cause methemoglobinemia in infant. Public Health Rep 80:1119

    Article  CAS  Google Scholar 

  2. Agrawal A, Tratnyek PG (1995) Reduction of nitro aromatic compounds by zero-valent iron metal. Environ Sci Technol 30:153–160

    Article  Google Scholar 

  3. Fanning J (2000) The chemical reduction of nitrate in aqueous solution. Coord Chem Rev 199(1):159–179

    Article  CAS  Google Scholar 

  4. Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127

    Article  CAS  Google Scholar 

  5. Kross BC, Hallberg GR, Bruner R, Cherryholmes K, Johnson KJ (1993) The nitrate contamination of private well water in Iowa. Am J Public Health 83:270–272

    Article  CAS  Google Scholar 

  6. Kapoor A, Viraraghavan T (1997) Nitrate removal from drinking water-review. J Environ Eng 123:371–380

    Article  CAS  Google Scholar 

  7. Mateju V, Cizinska S, Krejci J, Janoch T (1992) Biological water denitrification—a review. Enzyme Microb Technol 14:170–183

    Article  CAS  Google Scholar 

  8. Iizuka M, Sakamura Y, Inoue T (2006) Electrochemical reduction of (U–40Pu–5Np) O2 in molten LiCl electrolyte. J Nucl Mater 359:102–113

    Article  CAS  Google Scholar 

  9. Dima G, Beltramo G, Koper M (2005) Nitrate reduction on single-crystal platinum electrodes. Electrochim Acta 50:4318–4326

    Article  CAS  Google Scholar 

  10. Kerkeni S, Lamy-Pitara E, Barbier J (2002) Copper–platinum catalysts prepared and characterized by electrochemical methods for the reduction of nitrate and nitrite. Catal Today 75:35–42

    Article  CAS  Google Scholar 

  11. Li HL, Chambers JQ, Hobbs DT (1988) Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel and phthalocyanine-modified electrodes. J Appl Electrochem 18:454–458

    Article  CAS  Google Scholar 

  12. Katsounaros I, Ipsakis D, Polatides C, Kyriacou G (2006) Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim Acta 52:1329–1338

    Article  CAS  Google Scholar 

  13. Genders JD, Hartsough D, Hobbs D (1996) Electrochemical reduction of nitrates and nitrites in alkaline nuclear waste solutions. J Appl Electrochem 26:1–9

    Article  CAS  Google Scholar 

  14. Georgeaud V, Diamand A, Borrut D, Grange D, Coste M (2011) Electrochemical treatment of wastewater polluted by nitrate: selective reduction to N2 on Boron-Doped Diamond cathode. Water Sci Technol 63:206–212

    Article  CAS  Google Scholar 

  15. Chebotareva N, Nyokong T (1997) Metallophthalocyanine catalyzed electroreduction of nitrate and nitrite ions in alkaline media. J Appl Electrochem 27:975–981

    Article  CAS  Google Scholar 

  16. Dima GE, de Vooys ACA, Koper MTM (2003) Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J Electroanal Chem 554–555:15–23

    Article  Google Scholar 

  17. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  18. Plieth WJ, Bard AJ (1978) Encyclopedia of the electrochemistry of the elements. Marcel Dekker Inc., New York

    Google Scholar 

  19. Jasinski R (1965) Cobalt phthalocyanine as a fuel cell cathode. J Electrochem Soc 112:526–528

    Article  CAS  Google Scholar 

  20. Ramavathu LN, Maniam KK, Gopalram K, Chetty R (2012) Effect of pyrolysis temperature on cobalt phthalocyanine supported on carbon nanotubes for oxygen reduction reaction. J Appl Electrochem 42:945–951

    Article  CAS  Google Scholar 

  21. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    Article  CAS  Google Scholar 

  22. Sorokin AB (2013) Phthalocyanine metal complexes in catalysis. Chem Rev 113:8152–8191

    Article  CAS  Google Scholar 

  23. Figueiredo J, Pereira M, Freitas M, Orfao J (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389

    Article  CAS  Google Scholar 

  24. Antolini E, Gonzalez ER (2009) Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180:746–763

    Article  CAS  Google Scholar 

  25. Beard K, Schaal M, Van Zee J, Monnier J (2007) Preparation of highly dispersed PEM fuel cell catalysts using electroless deposition methods. Appl Catal B 72:262–271

    Article  CAS  Google Scholar 

  26. Rodriguez MC, Rivas GA (2002) Glassy carbon paste electrodes modified with polyphenol oxidase: analytical applications. Anal Chim Acta 459: 43–51

  27. Wu J, Yang H (2011) Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res 4:72–82

    Article  CAS  Google Scholar 

  28. Scott RA, Lukehart CM (2013) Applications of physical methods to inorganic and bioinorganic chemistry. Wiley, New York

    Google Scholar 

  29. Achmad F, Kamarudin SK, Daud WRW, Majlan EH (2011) Passive direct methanol fuel cells for portable electronic devices. Appl Energy 88:1681–1689

    Article  Google Scholar 

  30. Jung H-Y, Kim JW (2012) Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC). Int J Hydrogen Energy 37:12580–12585

    Article  CAS  Google Scholar 

  31. Moorcroft MJ, Davis J, Compton RG (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54:785–803

    Article  CAS  Google Scholar 

  32. Hafezi B, Majidi MR (2013) A sensitive and fast electrochemical sensor based on copper nanostructures for nitrate determination in foodstuffs and mineral waters. Anal Methods 5:3552–3556

    Article  CAS  Google Scholar 

  33. Cataldo D, Maroon M, Schrader L, Youngs V (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid 1. Commun Soil Sci Plan 6:71–80

    Article  CAS  Google Scholar 

  34. Griess P (1879) Griess reagent: a solution of sulphanilic acid and α-naphthylamine in acetic acid which gives a pink colour on reaction with the solution obtained after decomposition of nitrosyl complexes. Chem Ber 12:426–428

    Article  Google Scholar 

  35. Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, et al (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159: 595–603

  36. Gaillot A-C, Lanson B, Drits VA (2005) Structure of birnessite obtained from decomposition of permanganate under soft hydrothermal conditions. 1. Chemical and structural evolution as a function of temperature. Chem Mater 17:2959–2975

    Article  CAS  Google Scholar 

  37. Borker P, Salker A (2006) Synthesis, characterization and photocatalytic studies of some metal phthalocyanines. Indian J Chem Technol 13:341

    CAS  Google Scholar 

  38. Davis J, Moorcroft MJ, Wilkins SJ, Compton RG, Cardosi MF (2000) Electrochemical detection of nitrate and nitrite at a copper modified electrode. Analyst 125:737–742

    Article  CAS  Google Scholar 

  39. de Vooys ACA, van Santen RA, van Veen JAR (2000) Electrocatalytic reduction of \( {\text{NO}}_{3}^{ - } \) on palladium/copper electrodes. J Mol Catal A Chem 154: 203

  40. Ouassim G, Sarrazina Mathieu, Rouéa Lionel, Bélangerb D (2008) Electrochemical reduction of nitrate on pyrolytic graphite-supported Cu and Pd–Cu electrocatalysts. J Electrochem Soc 155:F117–F123

    Article  Google Scholar 

  41. Pronkin SN, Simonov PA, Zaikovskii VI, Savinova ER (2007) Model Pd-based bimetallic supported catalysts for nitrate electroreduction. J Mol Catal A 265:141

    Article  CAS  Google Scholar 

  42. Zhao F, Wu X, Wang M, Liu Y, Gao L et al (2004) Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Anal Chem 76:4960–4967

    Article  CAS  Google Scholar 

  43. Fazil A, Chetty R (2014) Synthesis and evaluation of carbon nanotubes supported silver catalyst for alkaline fuel cell. Electroanal 26:2380–2387

    Article  CAS  Google Scholar 

  44. Xiang Y, Zhou D-L, Rusling JF (1997) Electrochemical conversion of nitrate to ammonia in water using cobalt-DIM as catalyst. J Electroanal Chem 424:1–3

    Article  CAS  Google Scholar 

  45. Li M, Feng C, Zhang Z, Shen Z, Sugiura N (2009) Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochem Commun 11:1853–1856

    Article  CAS  Google Scholar 

  46. Yoshioka T, Iwase K, Nakanishi S, Hashimoto K, Kamiya K (2016) Electrocatalytic reduction of nitrate to nitrous oxide by a copper-modified covalent triazine framework. J Phys Chem C 120:15729–15734

    Article  CAS  Google Scholar 

  47. Epron F, Gauthard F, Pineda C, Barbier J (2001) Catalytic reduction of nitrate and nitrite on Pt–Cu/Al catalysts in aqueous solution: role of the interaction between copper and platinum in the reaction. J Catal 198:309–318

    Article  CAS  Google Scholar 

  48. Cheng H, Scott K, Christensen PA (2005) Application of a solid polymer electrolyte reactor to remove nitrate ions from wastewater. J Appl Electrochem 35:551

    Article  CAS  Google Scholar 

  49. Soares OSGP, Órfão JJM, Pereira MFR (2010) Nitrate reduction catalyzed by Pd–Cu and Pt–Cu supported on different carbon materials. Catal Lett 139:97–104

    Article  CAS  Google Scholar 

  50. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253:337–358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Indian Institute of Technology (IIT) Madras for the financial support. We acknowledge DST-FIST for providing the instrumentation facility to the Department of Chemical Engineering, IIT Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuram Chetty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajmohan, K.S., Chetty, R. Enhanced nitrate reduction with copper phthalocyanine-coated carbon nanotubes in a solid polymer electrolyte reactor. J Appl Electrochem 47, 63–74 (2017). https://doi.org/10.1007/s10800-016-1020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1020-7

Keywords

Navigation