Skip to main content
Log in

Using fluorescent material for enhancing microalgae growth rate in photobioreactors

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study investigates the spectral shifting UV-A radiation by fluorescent material as a tool for enhancing Chlorella sp. growth rate in photobioreactors made of UV-stabilized polycarbonate (PC). The fluorescent dye was dissolved in a thermoplastic acrylic resin, and the mixture was applied as a coating on to the substrates. The feasibility of using the fluorescent coating as wavelength shifter layer to shift UV-A radiation of a full spectrum light source to the photosynthetically active region (PAR) was explored. For this purpose, a solution of the fluorescent dye in resin was prepared and used to coat front surface of the reactor. Comparing to the uncoated reactor, the reactor coated with the wavelength shifter layer exhibited about 10 % increase in biomass productivity over the same culture period. It was also found that the elimination of UV-A radiation increases chlorophyll a content in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bloembergen N (1959) Solid state infrared quantum counters. Phys Rev Lett 2:84–85

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Castenholz RW (1997) Multiple strategy for UV tolerance in cyanobacteria. Spectrum 10:10–16

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol 6:67–74

    Article  Google Scholar 

  • Danesi EDG, Rangel-Yagui CO, Carvalho JCM, Sato S (2004) Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg 26:329–335

    Article  CAS  Google Scholar 

  • Delavari Amrei H, Nasernejad B, Ranjbar R, Rastegar S (2013) Spectral shifting of UV-A wavelengths to blue light for enhancing growth rate of cyanobacteria. J Appl Phycol. doi:10.1007/s10811-013-0187-0

    Google Scholar 

  • Estevez MS, Malanga G, Puntarulo S (2001) UV-B effects on Antarctic Chlorella sp. cells. J Photochem Photobiol B 62:19–25

    Article  CAS  PubMed  Google Scholar 

  • Helbling EW, Villafane V, Ferrario M, Holm-Hansen O (1992) Impact of natural ultraviolet radiation on rates of photosynthesis and on specicfic marine phytoplankton species. Mar Ecol Prog Ser 80:89–100

    Article  Google Scholar 

  • Herrmann H, Häder DP, Ghetti F (1997) Inhibition of photosynthesis by solar radiation in Dunaliella salina: relative efficiencies of UV-B, UV-A and PAR. Plant Cell Environ 20:359–365

    Article  CAS  Google Scholar 

  • Hirata S, Taya M, Tone S (1998) Continuous cultures of Spirulina platensis under photoautotrophic conditions with change in light intensity. J Chem Eng Jpn 31:636–639

    Article  CAS  Google Scholar 

  • Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207

    Article  PubMed  Google Scholar 

  • Hovel HJ, Hodgson RT, Woodall JM (1979) The effect of fluorescent wavelength shifting on solar cell spectral response. Sol Energ Mater 2:19–29

    Article  CAS  Google Scholar 

  • Imamoglu E, Dalay M, Sukan F (2010) Semi-continuous cultivation of Haematococcus pluvialis for commercial production. Appl Biochem Biotech 160:764–772

    Article  CAS  Google Scholar 

  • Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S (2006) Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng 102:442–446

    Article  CAS  PubMed  Google Scholar 

  • Katsuda T, Shiraishi H, Ishizu N, Ranjbar R, Katoh S (2008) Effect of light intensity and frequency of flashing light from blue light emitting diodes on astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng 105:216–220

    Article  CAS  PubMed  Google Scholar 

  • Klampaftis E, Ross D, McIntosh KR, Richards BS (2009) Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol Energ Mat Sol C 93:1182–1194

    Article  CAS  Google Scholar 

  • Kohen E, Santus R, Hirschberg JG (1995) Photobiology. Academic, London

    Google Scholar 

  • Lee CG, Palsson BØ (1994) High-density algal photobioreactors using light-emitting diodes. Biotechnol Bioeng 44:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1985) Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem Soc Trans 11:591–592

    Google Scholar 

  • Maruyama T, Kitamura R (2001) Transformations of the wavelength of the light incident upon solar cells. Sol Energ Mat Sol C 69:207–216

    Article  CAS  Google Scholar 

  • Matthijs HCP, Balke H, Van Hes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107

    Article  CAS  PubMed  Google Scholar 

  • McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agr Forest Meteorol 9:191–216

    Article  Google Scholar 

  • Mohsenpour SF, Willoughby N (2013) Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technol 142:147–153

    Article  CAS  Google Scholar 

  • Mohsenpour SF, Richards B, Willoughby N (2012) Spectral conversion of light for enhanced microalgae growth ratesand photosynthetic pigment production. Bioresource Technol 125:75–81

    Article  CAS  Google Scholar 

  • Navntoft C, Dawidowski L, Blesa MA, Fernandez-Ibanez P, Wolfram EA, Paladini A (2009) UV-A (315–400 nm) irradiance from measurements at 380 nm for solar water treatment and disinfection: comparison between model and measurements in Buenos Aires, Argentina and Almeria, Spain. Sol Energ 83:280–286

    Article  CAS  Google Scholar 

  • Prokop A, Quinn MF, Fekri M, Murad M, Ahmed SA (1984) Spectral shifting by dyes to enhance algae growth. Biotechnol Bioeng 26:1313–1322

    Article  CAS  PubMed  Google Scholar 

  • Ranjbar R, Inoue R, Katsuda T, Yamaji H, Katoh S (2008) High efficiency production of astaxanthin in an airlift photobioreactor. J Biosci Bioeng 106:204–207

    Article  CAS  PubMed  Google Scholar 

  • Richards BS (2006) Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol Energ Mater Sol C 90:1189–1207

    Article  CAS  Google Scholar 

  • Richards BS, McIntosh KR (2007) Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations. Prog Photvoltaics Res Appl 15:27–34

    Article  CAS  Google Scholar 

  • Ronda CR (1995) Phosphors for lamps and displays: an applicational view. J Alloy Compd 225:534–538

    Article  CAS  Google Scholar 

  • Rowan BC, Wilson LR, Richards BS (2008) Advanced material concepts for luminescent solar concentrators. IEEE J Sel Top Quant 14:1312–1322

    Article  CAS  Google Scholar 

  • Sinha RP, Klisch M, Gröniger A, Häder DP (1998) Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J Photochem Photobiol B 47:83–94

    Article  CAS  Google Scholar 

  • Slooff LH, Kinderman R, Burgers AR, Bakker NJ, Van Roosmalen JAM, Buchtemann A (2007) Efficiency enhancement of solar cells by application of a polymer coating containing a luminescent dye. J Sol Energ Eng 129:272–276

    Article  CAS  Google Scholar 

  • Solovchenko A (2010) Photoprotection in plants. Optical screening-based mechanisms. Springer, Heidelberg

    Book  Google Scholar 

  • Strümpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, Svrcek V (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol Energ Mater Sol C 91:238–249

    Article  Google Scholar 

  • Sukenik A (1991) Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technol 35:263–269

    Article  CAS  Google Scholar 

  • Turcsányi E, Vass I (2000) Inhibition of photosynthetic electron transport by UV-A radiation targets the photosystem II complex. Photochem Photobiol 72:513–520

    Article  PubMed  Google Scholar 

  • Van Sark WG (2008) Simulating performance of solar cells with spectral downshifting layers. Thin Solid Films 516:6808–6812

    Article  Google Scholar 

  • Van Sark WG, Meijerink A, Schropp REI, van Roosmalen JAM, Lysen EH (2005) Enhancing solar cell efficiency by using spectral converters. Sol Energ Mat Sol C 87:395–409

    Article  Google Scholar 

  • Wang C-Y, Fu C-C, Liu Y-C (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25

    Article  Google Scholar 

  • Wang W-J, Sun X-T, Wang G-C, Xu P, Wang X-Y, Lin Z-L, Wang F-J (2010) Effect of blue light on indoor seedling culture of Saccharina japonica (Phaeophyta). J Appl Phycol 22:737–744

    Article  Google Scholar 

  • White AL, Jahnke LS (2002) Contrasting effects of UV-A and UV-B on photosynthesis and photoprotection of beta-carotene in two Dunaliella spp. Plant Cell Physiol 43:877–884

    Article  CAS  PubMed  Google Scholar 

  • Wondraczek L, Batentschuk M, Schmidt MA, Borchardt R, Scheiner S, Seemann B, Schweizer P, Brabec CJ (2013) Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat Commun 4:2047. doi:10.1038/ncomms3047

    Article  PubMed  Google Scholar 

  • Xia Q, Batentschuk M, Osvet A, Richter P, Häder DP, Schneider J, Brabec CJ, Wondraczek L, Winnacker A (2013) Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material. Opt Express 21:A909–A916

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Madanipour and Mr. Hosseini from optical measurement Central Laboratory of Optics, Laser & Photonics Institute of Amirkabir University of Technology for assisting us with light-measuring devices and methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nasernejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delavari Amrei, H., Ranjbar, R., Rastegar, S. et al. Using fluorescent material for enhancing microalgae growth rate in photobioreactors. J Appl Phycol 27, 67–74 (2015). https://doi.org/10.1007/s10811-014-0305-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0305-7

Keywords

Navigation