Skip to main content
Log in

Anaerobic digestion of Spirulina sp. and Scenedesmus sp.: a comparison and investigation of the impact of mechanical pre-treatment

  • 5th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) is a unit process that integrates beneficially and sustainably into many bioprocesses. This study assesses and compares the production of methane from the biomass of the microalga Scenedesmus sp. and the cyanobacterium Spirulina sp. in batch anaerobic digesters. Anaerobic digestion of whole cell Spirulina resulted in a substantially higher methane productivity (0.18 L CH4 Lreactor −1 day−1) and methane yield (0.113 L CH4 g−1 volatile solids (VS)) compared to the digestion of whole cell Scenedesmus (0.12 L CH4 Lreactor −1 day−1 and 0.054 L CH4 g VS−1). Spirulina, possibly due to a combination of osmotic shock, the filamentous nature of the cells and lower mechanical strength of the non-cellulosic cell wall, was more readily degraded by hydrolytic and acidogenic microorganisms, resulting in the generation of a greater amount of acetic acid. This in turn provided greater substrate for methanogens and hence higher methane yields. In addition, Spirulina cells could be disrupted mechanically more quickly (1 h) than Scenedesmus cells (4 h) in a bead mill. Mechanical pre-treatment improved the final methane yields (L CH4 g VS−1) obtained from digestion of both substrates; however, the improvement was greater for Scenedesmus. Mechanical pre-treatment resulted in a 47 % increase in methane production for Spirulina compared to 76 % increase for Scenedesmus fed digesters. The more substantial increase observed for Scenedesmus was due to the relatively inefficient digestion of the whole, unruptured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Public Health Association (1992) Standard methods for the examination of water and wastewater, 18th edn. 1015 Fifteenth Street, NW, Washington, DC 2005–2605

  • Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372

    Article  CAS  PubMed  Google Scholar 

  • Blokker P, Schouten S, van den Ende H, de Leeuw JW, Hatcher PG, Sinninghe Damste JS (1998) Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Org Geochem 29:1453–1468

    Article  CAS  Google Scholar 

  • Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76:101–108

    Article  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25

    Article  Google Scholar 

  • Braun R, Weiland P, Wellinger A (2010) Biogas fom energy crop digestion. IEA Bioenergy report: Task 37 – energy from biogas and landfill gas. Available at http://www.iea-biogas.net/files/daten-redaktion/download/energycrop_def_Low_Res.pdf

  • Chen PH (1987) Factors influencing methane fermentation of microalgae. Doctoral thesis, University of California, Berkley, USA

  • Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24:889–897

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion systems. Biotechnol Bioeng 103:296–304

    Article  PubMed  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Environ Microbiol 7:219–227

    CAS  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Environ Microbiol 5:47–55

    CAS  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012a) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012b) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111

    Article  CAS  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114

    Article  CAS  Google Scholar 

  • Harrison STL, van Hille RP, Mokone T, Motleleng L, Legrand C, Marais T (2014) Addressing the challenges facing biological sulphate reduction as a strategy for ARD treatment: analysis of the reactor stage: raw materials, products and process kinetics. South African Water Research Commission Report: WRC2110/1/2014, June 2014, pp100. Available at http://www.wrc.org.za

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  • Inglesby AE, Fisher AC (2012) Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ Sci 5:7996–8006

    Article  CAS  Google Scholar 

  • McGinn PJ, Dickinson KE, Park KC, Whitney CG, MacQuarrie SP, Black FJ, Frigon JC, Guiot SR, O’Leary SJB (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1:155–165

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  CAS  PubMed  Google Scholar 

  • Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludge. J Environ Eng 112:867–920

    Article  CAS  Google Scholar 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer JP (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206

    Article  CAS  PubMed  Google Scholar 

  • Samson R, LeDuy A (1982) Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 24:1919–1924

    Article  CAS  PubMed  Google Scholar 

  • Samson R, LeDuy A (1983a) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotech Lett 5:677–682

    Article  Google Scholar 

  • Samson R, LeDuy A (1983b) Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotech Lett 5:671–676

    Article  Google Scholar 

  • Samson R, LeDuy A (1986) Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 28:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Sanchez EP, Travieso L (1993) Anaerobic digestion of Chlorella vulgaris for energy production. Resour Conserv Recycl 9:127–132

    Article  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  PubMed  Google Scholar 

  • Tartakovsky B, Matteau-Lebrun F, McGinn PJ, O’Leary SJB, Guiot SR (2013) Methane production from the microalga Scenedesmus sp. AMDD in a continuous anaerobic reactor. Algal Res 2:394–400

    Article  Google Scholar 

  • Tran KC, Mendoza Martin JL, Heaven S, Banks CJ, Acien Fernandez FG, Molina Grima E (2014) Cultivation and anaerobic digestion of Scenedesmus spp. grown in a pilot-scale open raceway. Algal Res 5:95–102

    Article  Google Scholar 

  • Van Eykelenburg C (1977) On the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie Van Leeuwenhoek 43:89–99

    Article  PubMed  Google Scholar 

  • Varel VH, Chen TH, Hashimoto AG (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Conserv Recycl 1:19–26

    Article  CAS  Google Scholar 

  • Ververis C, Georghiou K, Danielidis D, Hatzinikolaou DG, Santas P, Santas R, Corleti V (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98:296–301

    Article  CAS  PubMed  Google Scholar 

  • Voigt J, Stolarczyk A, Zych M, Malec P, Burczyk J (2014) The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii. Plant Sci 215–216:39–47

    Article  PubMed  Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Hydrogen and methane production from lipid extracted microbial biomass residues. Int J Hydrog Energy 36:3465–3470

    Article  CAS  Google Scholar 

  • Yen H-W, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  CAS  PubMed  Google Scholar 

  • Zamalloa C, Vrieze JD, Boon N, Verstraete W (2012) Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Bioenergy Biofuels 93:859–869

    CAS  Google Scholar 

  • Zarrouk C (1966) Contribution à l’e étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthése de Spirulina maxima. Doctoral thesis, Université de Paris

Download references

Acknowledgments

This work is based upon research supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation (NRF). The financial assistance of these organisations is hereby acknowledged. Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and SARChI and the NRF do not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. L. Harrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inglesby, A.E., Griffiths, M.J., Harrison, S.T.L. et al. Anaerobic digestion of Spirulina sp. and Scenedesmus sp.: a comparison and investigation of the impact of mechanical pre-treatment. J Appl Phycol 27, 1891–1900 (2015). https://doi.org/10.1007/s10811-015-0669-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0669-3

Keywords

Navigation