Skip to main content
Log in

Mechanism for Highly Efficient Non-Radiative Deactivation of Electronic Excitation in Rutin

  • Published:
Journal of Applied Spectroscopy Aims and scope

Steady-state and pulsed spectroscopic methods are used to study the spectroscopic and photophysical properties of the biologically important plant pigment rutin at room temperature and 77 K in organic solvents and a buffer solution at pH 7.0. The large dipole moment μe = 13.3 D of the rutin molecule in a Franck–Condon excited state indicates that rutin is dipolar in this excited state. The nonstationary S1 → Sn induced absorption spectra are characterized by a short-wavelength band at λabs max = 460 nm and low-intensity absorption in the 500–750 range which clearly belongs to associates of rutin. No residual induced absorption which might be related to triplet-triplet T1→Tk transitions in rutin was observed over the entire spectral range for times >50 ns. S1 → S0 fluorescence with a quantum yield Φfl ~ 10–4 was also observed at room temperature. The fluorescence and fluorescence excitation spectra manifest a weak dependence on the excitation and detection wavelengths, which may be related to the presence of conformers in the solution owing to rotation of the phenol B ring around a single 1′–2 bond. Lowering the temperature of a glassy frozen solution of rutin in ethanol to 77 K raises Φfl by a factor of 750. A rate constant kic = 3.7·1011 s–1 for internal conversion from the S1 state at room temperature is calculated from the spectral-luminescence data. It is found that the main channel for exchange of electronic excitation energy in the rutin molecule at room temperature is S1(π,π*) ~~> S0-internal conversion induced by the charge-transfer state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. St. Rusnyak and A. Sent-Gyorgui, Nature, 138, 27 (1936).

    Article  ADS  Google Scholar 

  2. J. A. Rothwell, A. J. Day, and M. R. A. Morgan, J. Agric. Food Chem., 53, 4355–4360 (2005).

    Article  Google Scholar 

  3. A. Gaberščik, M. Vončina, T. Trošt, M. Germ, and L. O. Björn, J. Photochem. Photobiol. B: Biol., 66(b), 30–36 (2002).

    Google Scholar 

  4. K. E. Heim, A. R. Tagliaferro, and D. J. Bobilya, J. Nutrit. Biochem., 13, 572–584 (2002).

    Article  Google Scholar 

  5. N. Saevan and A. Jimtaisong, J. Appl. Pharm. Science, 3, 129–141 (2013).

    Google Scholar 

  6. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, Agronomie, 19, 543–578 (1999).

    Article  Google Scholar 

  7. E. Falkovskaia, P. K. Sengupta, and M. Kasha, Chem. Phys. Lett., 297, 109–114 (1998).

    Article  ADS  Google Scholar 

  8. O. S. Wolfbeis, M. Leiner, P. Hochmuth, and H. Geiger, Ber. Bunsen-Ges. Phys. Chem., 88, 759–767 (1984).

    Article  Google Scholar 

  9. P.-T. Chou, Y.-C. Chen, W.-S. Yu, and Y.-M. Cheng, Chem. Phys. Lett., 340, 89–97 (2001).

    Article  ADS  Google Scholar 

  10. H.-B. Liu, D. Yu, S. C. Shin, H.-R. Park, J. K. Park, and K.-M. Bark, Photochem. Photobiol., 85, 934–942 (2009).

    Article  Google Scholar 

  11. V. Ulvarosi, S. F. Barbuceanu, V. Aldea, C.-C. Arama, M. Baden, R. Olar, and D. Marinescu, Molecules, 15, 1578–1589 (2010).

    Article  Google Scholar 

  12. S. L. Bondarev and V. N. Knyukshto, J. Lumin., 142, 236–240 ( 2013).

    Article  Google Scholar 

  13. J. C. Valle, J. Chem. Phys. 124, 104506-1–104506-13 (2006).

  14. M. Sarkar and P. K. Sengupta, J. Photochem. Photobiol. A: Chem., 48, 175–183 (1989).

    Article  Google Scholar 

  15. E. C. Lim, J. Phys. Chem., 90, 6770–6777 (1986).

    Article  Google Scholar 

  16. T. Lay, B. T. Lim, and E. C. Lim, J. Am. Chem. Soc., 104, 7631–7635 (1982).

    Article  Google Scholar 

  17. G. J. Smith and K. R. Markham, J. Photochem. Photobiol. A: Chem., 99, 97–101 (1996).

    Article  Google Scholar 

  18. E. A. Borisevich, V. N. Knyukshto, A. N. Kozyriev, and K. N. Solov′ev, Opt. Spektrosk., 74, 210–221 (1993).

  19. J. N. Demas and G. A. Crosby, J. Chem. Phys., 75, 991–1012 (1971).

    Article  Google Scholar 

  20. N. A. Borisevich, O. V. Buganov, S. A. Tikhomirov, G. V. Tolstorozhev, and G. L. Shkred, Kvant. Elektron., 28, 225–232 (1999).

    Google Scholar 

  21. T. J. Mabry, K. R. Markham, and M. B. Thomas, The Systematic Identifi cation of Flavonoids, Springer, Berlin (1970).

    Book  Google Scholar 

  22. P. Matteini, A. Gotti, and G. Agati, Monatsch. Chem., 141, 793–800 (2010).

    Article  Google Scholar 

  23. M. Friedman and H. S. Jürgens, J. Agric. Food Chem., 48, 2101–2110 (2000).

    Article  Google Scholar 

  24. E. MacRae, J. Phys. Chem., 61, 562–570 (1957).

    Article  Google Scholar 

  25. N. G. Bakhshiev, M. I. Knyazhanskii, V. I. Minkin, O. A. Osipov, and G. V. Saidov, Usp. Khim., 38, 1643–1670 (1969).

    Article  Google Scholar 

  26. M. Ito, K. Inuzuka, and S. Imanisi, J. Am. Chem. Soc., 82, 1317–1322 (1960).

    Article  Google Scholar 

  27. V. Sadovoy, A. Silantyev, M. Selimov, and T. Shchedrina, Food Nutr. Sci., 2, 1121–1127 (2011).

    Article  Google Scholar 

  28. A. Bondi, J. Phys. Chem., 68, 441–451 (1964).

    Article  Google Scholar 

  29. H. Reinhardt, Solvents in Organic Chemistry [in Russian], Khimiya, Leningrad (1973).

    Google Scholar 

  30. R. H. M. van de Leur, Polymer, 35, 2691–2700 (1994).

    Article  Google Scholar 

  31. Y. Norikane, H. Itoh, and T. Arai, J. Photochem. Photobiol. A: Chem., 161, 163–168 (2004).

    Article  Google Scholar 

  32. V. Avila and C. M. Previtali, J. Chem. Soc. Perkin Trans., 2 (12), 2281–2286 (1995).

    Article  Google Scholar 

  33. G. R. Fleming, in: Chemical Applications of Ultrafast Spectroscopy, Oxford Univ. Press, New York (1986), pp. 179–195.

  34. I. Yu. Martynov, A. B. Demyashkevich, B. M. Uzhinov, and M. G. Kuz′min, Usp. Khim., 46, 3–28 (1977).

  35. V. G. Plotnikov and G. V. Maier, Opt. Spektrosk., 47, 113–120 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Bondarev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 6, pp. 852–859, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarev, S.L., Knyukshto, V.N., Tikhomirov, S.A. et al. Mechanism for Highly Efficient Non-Radiative Deactivation of Electronic Excitation in Rutin. J Appl Spectrosc 82, 929–935 (2016). https://doi.org/10.1007/s10812-016-0207-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0207-3

Keywords

Navigation