Skip to main content
Log in

Synthesis, Vibrational Spectra, and DFT Simulations of 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new thiophene derivative, 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene (2), was synthesized through the Suzuki coupling reaction of 4-bromo-5-methylthiophen-2-ylboronic acid (1) and 4-iodonitrobenzene, and its structure was confirmed by nuclear magnetic resonance (NMR), low and high resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), and X-ray investigations of the crystal structure. The FT-IR spectra (4000–400 cm–1), Raman spectra (4000–100 cm–1), and theoretical vibrational frequencies of this new substance were investigated. Its theoretically established geometric parameters and calculated vibrational frequencies are in good agreement with the reported experimental data. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and other related parameters of the compound were calculated. The ionization potentials given by the B3LYP and HF (Hartree–Fock) methods for this new compound are –0.30456 and –0.30501 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Irie, Chem. Rev., 100, 1685−1716 (2000).

    Article  Google Scholar 

  2. M. Balter, S. Li, J. R. Nilsson, J. Andreasson, and U. Pischel, J. Am. Chem. Soc., 135, 10230−10233 (2013).

    Article  Google Scholar 

  3. J.-C. Boyer, C-J. Carling, B. D. Gates, and N. R. Branda, J. Am. Chem. Soc., 132, 15766–15772 (2010).

    Article  Google Scholar 

  4. T. C. Pijper, T. Kudernac, W. R. Browne, and B. L. Feringa, J. Phys. Chem. C, 117, 17623–17632 (2013).

    Article  Google Scholar 

  5. N. Soh, K. Yoshida, H. Nakajima, K. Nakano, T. Imato, T. Fukaminatob, and M. Irie, M. Chem. Commun., 5206–5208 (2007).

  6. E. Negishi (Ed.), Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley-Interscience, New York, Part III (2002), 213 p.

  7. J. J. Li and G. W. Gribble, Palladium in Heterocyclic Chemistry; Pergamon, Amsterdam (2000).

    Google Scholar 

  8. J. J. Dong, D. Roy, J. R. Roy, M. Ionita, and H. Doucet, Synthesis, 3530–3546 (2011).

  9. G. Vamvounis and D. Gendron, Tetrahedron Lett., 54, 3785–3787 (2013).

    Article  Google Scholar 

  10. W. Renjie, P. Shouzhi, L. Gang, and C. Bing, Tetrahedron, 69, 5537–5544 (2013).

    Article  Google Scholar 

  11. K. A. Browne, D. D. Deheyn, G. A. El-Hiti, K. Smith, and I. Weeks, J. Am. Chem. Soc., 133, 14637–14648 (2011).

    Article  Google Scholar 

  12. K. Smith, G. A. El-Hiti, and A. S. Hegazy, Chem. Commun., 46, 2790−2792 (2010).

    Article  Google Scholar 

  13. K. Smith, G. A. El-Hiti, and A. C. Hawes, Synthesis, 2047−2052 (2003).

  14. K. Smith, G. A. El-Hiti, G. Pritchard, and A. Hamilton, J. Chem. Soc., Perkin Trans. I, 2299−2304 (1999).

  15. Y. Sert, A. A. Balakit, N. Öztürk, F. Ucun, and G. A. El-Hiti, Spectrochim. Acta A, 131, 502−511 (2014).

    Article  ADS  Google Scholar 

  16. Y. Sert, F. Ucun, G. A. El-Hiti, K. Smith, and A. S. Hegazy, J. Spectrosc. (2016); https://doi.org/10.1155/2016/5396439.

  17. G. M. Sheldrick, Acta Crystallogr., A64, 112–122 (2008).

    Article  ADS  Google Scholar 

  18. A. Frish, A. B. Nielsen, and A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA (2001).

    Google Scholar 

  19. D. C. Young, Computational Chemistry A Practical Guide for Applying Techniques to Real-World Problems (Electronics), John Wiley and Sons, New York (2001).

    Google Scholar 

  20. Gaussian 09, Revision A.1, Gaussian, Wallingford CT (2009).

  21. M. H. Jamróz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).

  22. M. H. Jamróz, Spectrochim. Acta A, 114, 220−230 (2013).

    Article  ADS  Google Scholar 

  23. G. A. El-Hiti, K. Smith, A. A. Balakit, A. Masmali, and B. M. Kariuki, Acta Crystallogr., E69, o1385 (2013).

    Google Scholar 

  24. A. Ünal and B. Eren, Spectrochim. Acta A, 114, 129–136 (2013).

    Article  ADS  Google Scholar 

  25. M. Karabacak, S. Bilgili, T. Mavis, M. Eskici, and A. Atac, Spectrochim. Acta A, 115, 709–718 (2013).

    Article  ADS  Google Scholar 

  26. W. T. Harrison, C. S. C. Kumar, H. S. Yathirajan, B. V. Ashalatha, and B. Narayana, Acta Crystallogr., E66, o2477 (2010).

    Google Scholar 

  27. X. Li, X. Jia, and J. Li, Acta Crystallogr., E69, o848 (2013).

    Google Scholar 

  28. M. M. Bader, Acta Crystallogr., E65, o2119 (2009).

    Google Scholar 

  29. M. Akkurt, Ş. P. Yalçın, A. M. Asiri, and O. Büyükgüngör, Acta Crystallogr., E64, o923 (2008).

    Google Scholar 

  30. Z. H. Choban, M. Hanif, and M. N. Tahir, Acta Crystallogr., E65, o117 (2009).

    Google Scholar 

  31. G. Varsayani, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. 1 and 2, Academic Kiado, Budapest (1973).

  32. M. Jag, Organic Spectroscopy-Principles and Applications, 2nd ed., Narosa Publishing House, New Delhi (2001).

    Google Scholar 

  33. V. Balachandran, A. Janaki, and A. Nataraj, Spectrochim. Acta A, 118, 321–330 (2014).

    Article  ADS  Google Scholar 

  34. J. Svoboda, J. Sedlacek, J. Zednik, G. Dvorakova, O. Trhlikova, D. Redrova, H. Balcar, and J. Vohlidal, J. Pol. Sci., 46, 2776–2787 (2008).

    Article  Google Scholar 

  35. C. I. Sainz-Diaz, M. Francisco-Marquez, and A. Vivier-Bunge, Theor. Chem. Acc., 125, 83–95 (2010).

    Article  Google Scholar 

  36. T. D. Klots, R. D. Chirico, and W. V. Steele, Spectrochim. Acta A, 5, 765–795 (1994).

    Article  ADS  Google Scholar 

  37. M. Karabacak, C. Karaca, A. Atac, M. Eskici, A. Karanfil, and E. Köse, Spectrochim. Acta A, 97, 556–567 (2012).

    Article  ADS  Google Scholar 

  38. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).

    Google Scholar 

  39. N. B. Colthup, L. H. Daly, and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston (1990).

    Google Scholar 

  40. B. Smith, Infrared Spectral Interpretation. A Systematic Approach, CRP Press, Washington, DC (1999).

    Google Scholar 

  41. A. Kumar, V. Deval, P. Tandom, A. Gupta, and E. D. D'silva, Spectrochim. Acta A, 130, 41–53 (2014).

    Article  ADS  Google Scholar 

  42. S. Periandy and S. Mohan, Proc. Natl. Acad. Sci. India, 68(A), III (1998).

    Google Scholar 

  43. V. R. Dani, Organic Spectroscopy, Tata-McGraw Hill Publishing Company, New Delhi, p. 139 (1995).

    Google Scholar 

  44. E. Fereyduni, M. K. Rofouei, M. Kamae, S. Ramalingam, and S. M. Sharifkhani, Spectrochim. Acta A, 90, 193–201 (2012).

    Article  ADS  Google Scholar 

  45. H. Abdel-Shafy, H. Perlmutter, and H. Kimmel, J. Mol. Struct., 42, 37–49 (1977).

    Article  ADS  Google Scholar 

  46. V. K. Kumar and V. Balachandran, Spectrochim. Acta A, 61, 1811–1819 (2005).

    Article  ADS  Google Scholar 

  47. A. Kovacs, G. Keresztury, and V. Izvekov, Chem. Phys., 253, 193–204 (2000).

    Article  ADS  Google Scholar 

  48. K. Sarojini, H. Krishnan, C. C. Kanakam, and S. Muthu, Spectrochim. Acta A, 108, 159–170 (2013).

    Article  ADS  Google Scholar 

  49. N. Sundaraganesan, S. Ilakiamani, H. Saleem, and S. Mohan, Indian J. Pure Appl. Phys., 42, 585–590 (2004).

    Google Scholar 

  50. S. Ayyapan, N. Sundaraganesan, M. Kurt, T. R. Sertbakan, and M. Ozduran, J. Raman Spectrosc., 41, 1379–1387 (2010).

    Article  ADS  Google Scholar 

  51. K. Chaitanya, Spectrochim. Acta A, 86, 159–173 (2012).

    Article  ADS  Google Scholar 

  52. E. Kavitha, N. Sundaraganesan, and S. Sebastian, Indian J. Pure Appl. Phys., 48, 20–30 (2010).

    Google Scholar 

  53. A. Jayaprakash, V. Arjunan, and S. Mohan, Spectrochim. Acta A, 81, 620–630 (2011).

    Article  ADS  Google Scholar 

  54. S. Subashchandrabose, H. Saleem, Y. Erdogdu, G. Rajarajan, and V. Thanikachalam, Spectrochim. Acta A, 82, 260–269 (2011).

    Article  ADS  Google Scholar 

  55. T. Vijayakumar, I. Hubert Joe, C. P. R. Nair, and V. S. Jayakumar, Chem. Phys., 343, 83–99 (2008).

    Article  ADS  Google Scholar 

  56. M. Govindarajan, M. Karabacak, A. Suvitha, and S. Periandy, Spectrochim. Acta A, 89,137–148 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Balakit, Y. Sert or G. A. El-Hiti.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 5, p. 834, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakit, A.A., Sert, Y., Çırak, Ç. et al. Synthesis, Vibrational Spectra, and DFT Simulations of 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene. J Appl Spectrosc 84, 888–899 (2017). https://doi.org/10.1007/s10812-017-0561-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0561-9

Keywords

Navigation