Skip to main content
Log in

Born–Oppenheimer Interatomic Forces from Simple, Local Kinetic Energy Density Functionals

  • Published:
Journal of Computer-Aided Materials Design

Abstract

Rapid calculation of Born–Oppenheimer (B–O) forces is essential for driving the so-called quantum region of a multi-scale molecular dynamics simulation. The success of density functional theory (DFT) with modern exchange-correlation approximations makes DFT an appealing choice for this role. But conventional Kohn–Sham DFT, even with various linear-scaling implementations, really is not fast enough to meet the challenge of complicated chemo-mechanical phenomena (e.g. stress-induced cracking in the presence of a solvent). Moreover, those schemes involve approximations that are difficult to check practically or to validate formally. A popular alternative, Car-Parrinello dynamics, does not guarantee motion on the B–O surface. Another approach, orbital-free DFT, is appealing but has proven difficult to implement because of the challenge of constructing reliable orbital-free (OF) approximations to the kinetic energy (KE) functional. To be maximally useful for multi-scale simulations, an OF-KE functional must be local (i.e. one-point). This requirement eliminates the two-point functionals designed to have proper linear-response behavior in the weakly inhomogeneous limit. In the face of these difficulties, we demonstrate that there is a way forward. By requiring only that the approximate functional deliver high-quality forces, by exploiting the “conjointness” hypothesis of Lee, Lee, and Parr, by enforcing a basic positivity constraint, and by parameterizing to a carefully selected, small set of molecules we are able to generate a KE functional that does a good job of describing various H q Si m O n clusters as well as CO (providing encouraging evidence of transferability). In addition to that positive result, we discuss several major negative results. First is definitive proof that the conjointness hypothesis is not correct, but nevertheless is useful. The second is the failure of a considerable variety of published KE functionals of the generalized gradient approximation type. Those functionals yield no minimum on the energy surface and give completely incorrect forces. In all cases, the problem can be traced to incorrect behavior of the functionals near the nuclei. Third, the seemingly obvious strategy of direct numerical fitting of OF-KE functional parameters to reproduce the energy surface of selected molecules is unsuccessful. The functionals that result are completely untransferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohenberg P., Kohn W. (1964). Phys. Rev. 136:B864–B871

    Article  MathSciNet  ADS  Google Scholar 

  2. Jones R.O., Gunnarsson O. (1989). Rev. Mod. Phys. 61:689

    Article  CAS  ADS  Google Scholar 

  3. Parr R.G., Yang W. (1989). Density Functional Theory of Atoms and Molecules, Oxford, NY,

  4. Dreizler R.M., Gross E.K.U. (1990). Density Functional Theory. Springer, Berlin

    MATH  Google Scholar 

  5. Kryachko E.S., Ludeña E.V. (1990). Energy Density Functional Theory of Many-Electron Systems. Kluwer, Dordrecht

    Google Scholar 

  6. Trickey, S.B., (spec. ed.), Density Functional Theory for Many-Fermion Systems, Adv. Quant. Chem. 21, Academic, San Diego, 1990.

  7. Gross E.K.U., Dreizler R.M. (eds) (1995). Density Functional Theory. Plenum, NY

    MATH  Google Scholar 

  8. Seminario J.M., Politzer P. (eds) (1995). Modern Density Functional Theory. Elsevier, Amsterdam

    Google Scholar 

  9. Chong D.P. (eds) (1995). Recent Advances in Density Functional Methods. World Scientific, Singapore

    MATH  Google Scholar 

  10. Kohn W., Becke A.D., Parr R.G. (1996). J. Phys. Chem. 100:12974

    Article  CAS  Google Scholar 

  11. Seminario J.M. (eds) (1996). Recent Developments and Applications of Modern Density Functional Theory. Elsevier, Amsterdam

    Google Scholar 

  12. Nalewajski R.F. (eds) (1996). Density Functional Theory. Springer, Berlin

    Google Scholar 

  13. Eschrig H. The Fundamentals of Density Functional Theory, Teubner Texte für Physik 32, Teubner, Stuttgart and Leipzig, (1996).

  14. Görling, A., Trickey, S.B., Gisdakis, P. and Rösch, N., in Topics in Organometallic Chemistry, vol. 4, P. Hoffmann, and J.M. Brown, eds. Springer, Berlin, 1999 109–63.

  15. Koch W., Holthaussen M.C. (2001). A Chemist’s Guide to Density Functional Theory, Second Ed. Wiley VCH, Weinheim

    Google Scholar 

  16. Kohn W., Sham L.J. (1965). Phys. Rev. 140:A1133

    Article  MathSciNet  ADS  Google Scholar 

  17. Car R., Parrinello M. (1985). Phys. Rev. Lett. 55:2471

    Article  PubMed  CAS  ADS  Google Scholar 

  18. Ludeña, E.V. and Karasiev, V.V., in Reviews of Modern Quantum Chemistry: a Celebration of the Contributions of Robert Parr, edited by K. D. Sen, World Scientific, Singapore, 2002, p. 612.

  19. Levy M. (1979). Proc. Natl. Acad. Sci. USA 76:6062

    Article  PubMed  CAS  ADS  Google Scholar 

  20. Chan G.K.-L., Handy N.C. (1999). Phys. Rev. A 59:2670

    Article  CAS  ADS  Google Scholar 

  21. Thomas L.H. (1927). Proc. Camb. Phil. Soc. 23:542

    Article  CAS  MATH  Google Scholar 

  22. Fermi, E., Atti Accad. Nazl. Lincei 6 (1927) 602; Z. Phys. 48 (1928) 73.

  23. Lieb E.H. (1981). Rev. Mod. Phys. 53:603

    Article  CAS  MathSciNet  ADS  MATH  Google Scholar 

  24. Teller E. (1962). Rev. Mod. Phys. 34:627

    Article  CAS  MATH  ADS  Google Scholar 

  25. Von Weizsäcker C.F. (1935). Z. Phys. 96:431

    Article  MATH  Google Scholar 

  26. Wang, Y.A. and Carter, E.A., Orbital-free Kinetic-energy Density Functional Theory, Chap. 5 in Theoretical Methods in Condensed Phase Chemistry, edited by S.D. Schwartz, Kluwer, NY, 2000, p. 117 and references therein.

  27. Wang Y.A., Teter M.P. (1992). Phys. Rev. B 45:13196

    Article  CAS  ADS  Google Scholar 

  28. Foley, M. and Madden, P.A., Phys. Rev. B 53 (1996) 10589 and refs. therein.

  29. García-González, P., Alvarellos, J.E. and Chacòn, E., Phys. Rev. A 57 (1998) 4192 and refs. therein.

  30. Choly N., Kaxiras E. (2002). Sol. State. Commun. 121:281

    Article  CAS  ADS  Google Scholar 

  31. Private communication, Wang, Y.A., to VVK and SBT, July, 2005, and to be published.

  32. Blanc X., Cancès E. J. Chem. Phys. 122 (2005) 214106

    Google Scholar 

  33. Hodges C.H. (1973). Can. J. Phys. 51:1428

    ADS  Google Scholar 

  34. Perdew J.P. (1992). Phys. Lett. A 165:79

    Article  CAS  ADS  Google Scholar 

  35. Tal Y., Bader R.F.W. (1978). Int. J. Quantum Chem. S12:153

    Google Scholar 

  36. Bartolotti L.J., Acharya P.K. (1982). J. Chem. Phys. 77:4576

    Article  CAS  ADS  Google Scholar 

  37. Levy M., Ou-Yang H. (1988). Phys. Rev. A 38:625

    Article  PubMed  ADS  Google Scholar 

  38. Ludeña E.V., Karasiev V., López-Boada R., Valderrama E., Maldonado J. (1999). J. Comp. Chem. 20:155

    Article  Google Scholar 

  39. Levy M., Perdew J.P., Sahni V. (1984). Phys. Rev. A 30:2745

    Article  ADS  Google Scholar 

  40. Herring C. (1986). Phys. Rev. A 34:2614

    Article  PubMed  ADS  Google Scholar 

  41. Gál, T. and Nagy, A., J. Mol. Struct Theochem 501–502 (2000) 167.

  42. Liu S., Parr R.G. (1997). Chem. Phys. Lett. 278:341

    Article  CAS  ADS  Google Scholar 

  43. Gál T. Phys. Rev. A 64 (2001) 062503.

    Google Scholar 

  44. Lee H., Lee C., Parr R.G. (1991). Phys. Rev. A 44:768

    Article  PubMed  CAS  ADS  Google Scholar 

  45. Lacks D.J., Gordon R.G. (1994). J. Chem. Phys. 100:4446

    Article  CAS  ADS  Google Scholar 

  46. Lembarki A., Chermette H. (1994). Phys. Rev. A 50:5238

    Article  ADS  Google Scholar 

  47. Fuentealba P., Reyes O. (1995). Chem. Phys. Lett. 232:31

    Article  CAS  ADS  Google Scholar 

  48. Fuentealba P. (1997). J. Mol. Struct. (THEOCHEM) 390:1

    Article  CAS  Google Scholar 

  49. Tran F., Wesolowski T.A. (2002). Int. J. Quantum. Chem 89:441

    Article  CAS  Google Scholar 

  50. Becke A.D. (1986). J. Chem. Phys. 84:4524

    Article  CAS  ADS  Google Scholar 

  51. Perdew J.P., Burke K., Ernzerhof M. (1996). Phys. Rev. Lett. 77:3865

    Article  PubMed  CAS  ADS  Google Scholar 

  52. DePristo A.E., Kress J.D. (1987). Phys. Rev. A 35:438

    Article  PubMed  CAS  ADS  Google Scholar 

  53. Thakkar A.J. (1992). Phys. Rev. A 46:6920

    Article  PubMed  ADS  Google Scholar 

  54. Slater J.C. (1951). Phys. Rev. 81:385

    Article  CAS  MATH  ADS  Google Scholar 

  55. Slater J.C. (1951). Phys. Rev. 82:538

    Article  CAS  ADS  Google Scholar 

  56. Slater J.C. (1965). J. Chem. Phys. 43:S228

    Article  CAS  MathSciNet  ADS  Google Scholar 

  57. Gáspár R. (1954). Acta Phys Hung. 3:263

    Article  MATH  Google Scholar 

  58. Kohn W., Sham L.J. (1965). Phys. Rev. 140:A1133

    Article  MathSciNet  ADS  Google Scholar 

  59. Tong B.Y., Sham L.J. (1966). Phys. Rev. 144:1

    Article  CAS  ADS  Google Scholar 

  60. Vosko S.H., Wilk L., Nusair M. (1980). Can. J. Phys. 58:1200

    Article  CAS  ADS  Google Scholar 

  61. Ceperley D.M., Alder B.J. (1980). Phys. Rev. Lett. 45:566

    Article  CAS  ADS  Google Scholar 

  62. Schäfer A., Horn H., Ahlrichs R. (1992). J. Chem. Phys. 97:2571

    Article  ADS  Google Scholar 

  63. Schäfer A., Huber C., Ahlrichs R. (1994). J. Chem. Phys. 100:5829

    Article  ADS  Google Scholar 

  64. Taken from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, funded by the U.S. Department of Energy (contract DE-AC06-76RLO). See http://www.emsl.pnl.gov/forms/basisform.html

  65. Becke A.D. (1988). J. Chem. Phys. 88:2547

    Article  CAS  ADS  Google Scholar 

  66. Lebedev, V.I. and Laikov, D.N., Dokl. Akad. Nauk 366 (1999) 741 [Dokl. Math. 59 (1999) 477].

    Google Scholar 

  67. Computational Chemistry List (CCL) Archives: http://www.ccl.net/

  68. Salvador P., Mayer I. (2004). J. Chem. Phys. 120:5046

    Article  PubMed  CAS  ADS  Google Scholar 

  69. Karasiev, V.V., Ludeña, E.V. and Artemyev, A.N., Phys. Rev. A 62 (2000) 062510.

    Google Scholar 

  70. Korn G.A., Korn T.M. (1961). Mathematical Handbook for Scientists and Engineers. McGraw-Hill, NY

    MATH  Google Scholar 

  71. Adamo C., Barone V. (2002). J. Chem. Phys. 116:5933

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Karasiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasiev, V.V., Trickey, S.B. & Harris, F.E. Born–Oppenheimer Interatomic Forces from Simple, Local Kinetic Energy Density Functionals. J Computer-Aided Mater Des 13, 111–129 (2006). https://doi.org/10.1007/s10820-006-9019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9019-8

Keywords

Navigation